Environmental factors play an integral role, either directly or indirectly, in structuring faunal assemblages. Water chemistry, predation, hydroperiod and competition influence tadpole assemblages within waterbodies. We surveyed aquatic predators, habitat refugia, water height and water chemistry variables (pH, salinity and turbidity) at 37 waterbodies over an intensive 22‐day field survey to determine which environmental factors influence the relative abundance and occupancy of two habitat specialist anuran tadpole species in naturally acidic, oligotrophic waterbodies within eastern Australian wallum communities. The majority of tadpoles found were of Litoria olongburensis (wallum sedge frog) and Crinia tinnula (wallum froglet) species, both habitat specialists that are associated with wallum waterbodies and listed as Vulnerable under the IUCN Red List. Tadpoles of two other species (Litoria fallax (eastern sedge frog), and Litoria cooloolensis (cooloola sedge frog)) were recorded from two waterbodies. Tadpoles of Litoria gracilenta (graceful treefrog) were recorded from one waterbody. Relative abundance and occupancy of L. olongburensis tadpoles were associated with pH and water depth. Additionally, L. olongburensis tadpole relative abundance was negatively associated with turbidity. Waterbody occupancy by C. tinnula tadpoles was negatively associated with predatory fish and water depth and positively associated with turbidity. Variables associated with relative abundance of C. tinnula tadpoles were inconclusive and further survey work is required to identify these environmental factors. Our results show that the ecology of specialist and non‐specialist tadpole species associated with ‘unique’ (e.g. wallum) waterbodies is complex and species specific, with specialist species likely dominating unique habitats.
The strong association between amphibian activity, breeding and recruitment with local environmental conditions raises concerns regarding how changes in climate may affect the persistence of species populations into the future. Additionally, in a highly diverse assemblage of anurans, competition for breeding sites affects the time and duration of activity, as species compete for limited resources such as water. Meteorological conditions are strong drivers of amphibian activity, so we assessed whether temperature, rainfall, atmospheric pressure and humidity were associated with the calling phenology of an assemblage of anurans in South East Queensland, Australia. We performed calling surveys and collected digital recordings at 45 ponds in an area known for high anuran diversity. We performed detection analyses to investigate the influence of 10 meteorological variables in detection of calling activity in 19 amphibian species. Our results suggest four breeding strategies in the assemblage: explosive summer breeders, prolonged breeders, opportunistic breeders and a winter breeder. Classifying these species into associations provides a framework for understanding how species respond to environmental conditions. Explosive breeders (i.e. species demonstrating short and highly synchronised breeding periods) were particularly responsive to temperature. Our findings help elucidate the breeding phenology of frogs and provide valuable information on their mating systems in native Australian forests. This study highlights the difficulties of surveying even common anurans. We highlight the importance of predictability and stability in climate and the vulnerability of species for which reproduction appears to require highly specific environmental cues.
The bilby (Macrotis lagotis) is listed as Vulnerable in Australia, is strictly nocturnal and shy, and it has proven difficult to estimate its population abundance. The aim of this study was to determine methodology that would reliably estimate the abundance of the bilby within an enclosure at Currawinya National Park, south-west Queensland. We estimated the abundance of bilbies on long-term monitoring plots by counting pellets comparing two methods: counting standing odorous pellets using distance sampling and counting newly deposited pellets (FAR). Pellet deposition rate and decay rate were also estimated to enable population estimation using distance sampling. The density of odorous (<14 days old) standing pellets and old pellets was highest in October 2011 and dropped dramatically when plots were revisited in March 2012 and July 2012. Counting standing pellets using distance sampling provided a rigorous estimate of abundance of bilbies at Currawinya. Bilby density and pellet deposition rates were too low for the FAR method to accurately or precisely estimate bilby density. A population crash within the enclosure following an invasion of feral cats was mirrored by a dramatic decrease in pellet density. Incorporating detectability into abundance estimation should be carefully considered for conservation purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.