Microelectrode arrays have been extensively utilized to record extracellular neuronal activity for brain-machine interface applications. Poly(3,4-ethylenedioxythiophene) (PEDOT) has gained interest because of its unique electrochemical characteristics and its excellent intrinsic electrical conductivity. However, the long-term stability of the PEDOT film, especially for chronic neural applications, is unclear. In this manuscript, we report for the first time the use of highly stable PEDOT doped with tetrafluoroborate (TFB) for long-term neural recordings. We show that PEDOT-TFB coated microelectrodes on average register more units compared to control gold microelectrodes for at least first four weeks post implantation. We collected the in vivo impedance data over a wide frequency spectrum and developed an equivalent circuit model which helped us determine certain parameters to distinguish between PEDOT-TFB microelectrodes with and without long-term activity. Our findings suggest that PEDOT-TFB is a chronically stable coating for neural recording microelectrodes. As such, PEDOT-TFB could facilitate chronic recordings with ultra-small and high-density neural arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.