Recent works showed the vulnerability of image classifiers to adversarial attacks in the digital domain. However, the majority of attacks involve adding small perturbation to an image to fool the classifier. Unfortunately, such procedures can not be used to conduct a real-world attack, where adding an adversarial attribute to the photo is a more practical approach.In this paper, we study the problem of real-world attacks on face recognition systems. We examine security of one of the best public face recognition systems, LResNet100E-IR with ArcFace loss, and propose a simple method to attack it in the physical world. The method suggests creating an adversarial patch that can be printed, added as a face attribute and photographed; the photo of a person with such attribute is then passed to the classifier such that the classifier's recognized class changes from correct to the desired one. Proposed generating procedure allows projecting adversarial patches not only on different areas of the face, such as nose or forehead but also on some wearable accessory, such as eyeglasses.
Recent studies proved that deep learning approaches achieve remarkable results on face detection task. On the other hand, the advances gave rise to a new problem associated with the security of the deep convolutional neural network models unveiling potential risks of DCNNs based applications. Even minor input changes in the digital domain can result in the network being fooled. It was shown then that some deep learningbased face detectors are prone to adversarial attacks not only in a digital domain but also in the real world. In the paper, we investigate the security of the well-known cascade CNN face detection system -MTCNN and introduce an easily reproducible and a robust way to attack it. We propose different face attributes printed on an ordinary white and black printer and attached either to the medical face mask or to the face directly. Our approach is capable of breaking the MTCNN detector in a realworld scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.