In kidney-alone recipients, dual-kidney transplantation using "higher-risk" donor organs has shown outcomes comparable to those of single-kidney transplantation using extended criteria donor (ECD) organs. To investigate the feasibility of a similar approach with combined kidney-liver transplantation, we identified 22 dual-kidney liver transplantations (DKLTs) and 3044 single-kidney liver transplantations (SKLTs) performed in the United States between 2002 and 2012 using United Network for Organ Sharing/Organ Procurement and Transplantation Network registry data. We compared donor/recipient characteristics as well as graft/recipient survival between DKLT recipients and SKLT recipients of "higher-risk" kidneys (ECD and high kidney donor profile index [KDPI; >85%] donors). Despite having overall similar donor and recipient characteristics compared with both "higher-risk" donor groups, recipient survival in the DKLT group at 36 months was markedly inferior at 40.9% (compared with 67.5% for ECD SKLT recipients and 64.5% for high-KDPI SKLT recipients); nondeath-censored graft survival did not differ. Death was the most common cause of graft loss in all groups. Contrary to dual-kidney transplantation data in kidney-alone recipients, DKLT recipients in our study had inferior survival when compared with SKLT recipients of "higher-risk" donor kidneys. These findings would suggest that dual kidney-liver transplantation has an uncertain role as a strategy to expand the existing kidney donor pool in combined transplantation.
Background: Donor-derived cell-free DNA (dd-cfDNA) is a marker of allograft injury in transplant recipients; however, the relationship between dd-cfDNA and other clinical parameters associated with adverse allograft outcomes is not well-characterized. Methods:We performed a retrospective analysis of kidney transplant recipients from the DART cohort (ClinicalTrials.gov Identifier: NCT02424227) to evaluate the associations between eGFR decline, de novo donor-specific antibodies (dnDSA), and dd-cfDNA.Results: Both elevated dd-cfDNA (≥1%) and dd-cfDNA variability (≥.34%) in the first post-transplant year were associated with decline in eGFR ≥25% in the second year (21.4% vs. 4.1%, P = .005; 25% vs. 3.6%, P = .002, respectively). Compared to samples from DSA negative patients, samples from patients with concurrent de novo HLA DSAs had higher dd-cfDNA levels (P < .0001).Discussion: Abnormalities in dd-cfDNA levels are associated with clinical parameters commonly used as surrogate endpoints for adverse allograft outcomes, raising the possibility that molecular injury as characterized by dd-cfDNA could help identify patients at risk of these outcomes.
BackgroundOver the last decade, expanding use of molecular diagnostics in heart transplantation has allowed implementation of non-invasive surveillance strategies for monitoring allograft health. The commercially available HeartCare platform combines the AlloMap gene expression profiling assay and the AlloSure donor-derived cell-free DNA test (dd-cfDNA). Beyond their established use for assessment of rejection, evidence is building for predictive utility, with the longitudinal AlloMap Variability score previously shown to correlate with the risk of future rejection, graft dysfunction, re-transplantation, or death. In this single-center, retrospective pilot study, we evaluated the performance of a novel AlloSure Variability metric in predicting mortality in a cohort of heart transplant recipients.MethodsSeventy-two adult heart transplant recipients with at least 3 concurrent AlloMap/AlloSure results were included. Demographic, clinical, imaging, and laboratory parameters were captured. Variability was defined as the standard deviation of longitudinal AlloMap/AlloSure results. A Cox multivariable adjusted proportional hazards model was used to evaluate the variability metrics as predictors of mortality. Associations between AlloMap/AlloSure variability and donor specific antibody (DSA) status were also assessed.ResultsA total of 5 patients (6.9%) died during a median follow-up of 480 days. In a univariate Cox proportional hazards model, higher AlloSure variability (HR 1.66, 95%CI 1.14 – 2.41), but not AlloMap variability or the cross-sectional AlloSure/AlloMap results was associated with increased mortality risk. Longitudinal AlloSure variability was also higher among patients with both preformed DSA and those developing de novo DSA.ConclusionOur results suggest that increased variability of dd-cfDNA in heart transplant patients is associated with both mortality risk and the presence of donor specific antibodies. These findings highlight the added value of longitudinal data in the interpretation of AlloMap/AlloSure scores in this population and open the door to larger studies investigating the utility of these metrics in shaping post-transplant clinical care paradigms.
Kidney transplant recipients require meticulous clinical and laboratory surveillance to monitor allograft health. Conventional biomarkers, including serum creatinine and proteinuria, are lagging indicators of allograft injury, often rising only after significant and potentially irreversible damage has occurred. Immunosuppressive medication levels can be followed, but their utility is largely limited to guiding dosing changes or assessing adherence. Kidney biopsy, the criterion standard for the diagnosis and characterization of injury, is invasive and thus poorly suited for frequent surveillance. Donor-derived cell-free DNA (dd-cfDNA) is a sensitive, noninvasive, leading indicator of allograft injury, which offers the opportunity for expedited intervention and can improve long-term allograft outcomes. This article describes the clinical rationale for a routine testing schedule utilizing dd-cfDNA surveillance at months 1, 2, 3, 4, 6, 9, and 12 during the first year following kidney transplantation and quarterly thereafter. These time points coincide with major immunologic transition points after transplantation and provide clinicians with molecular information to help inform decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.