We propose an example-based approach for simulating complex elastic material behavior. Supplied with a few poses that characterize a given object, our system starts by constructing a space of prefered deformations by means of interpolation. During simulation, this example manifold then acts as an additional elastic attractor that guides the object towards its space of prefered shapes. Added on top of existing solid simulation codes, this example potential effectively allows us to implement inhomogeneous and anisotropic materials in a direct and intuitive way. Due to its example-based interface, our method promotes an art-directed approach to solid simulation, which we exemplify on a set of practical examples.
Many textiles do not noticeably stretch under their own weight. Unfortunately, for better performance many cloth solvers disregard this fact. We propose a method to obtain very low strain along the warp and weft direction using Constrained Lagrangian Mechanics and a novel fast projection method. The resulting algorithm acts as a velocity filter that easily integrates into existing simulation code.
We propose a method for simulating the complex dynamics of partially and fully saturated woven and knit fabrics interacting with liquid, including the effects of buoyancy, nonlinear drag, pore (capillary) pressure, dripping, and convection-diffusion. Our model evolves the velocity fields of both the liquid and solid relying on mixture theory, as well as tracking a scalar saturation variable that affects the pore pressure forces in the fluid. We consider the porous microstructure implied by the fibers composing individual threads, and use it to derive homogenized drag and pore pressure models that faithfully reflect the anisotropy of fabrics. In addition to the bulk liquid and fabric motion, we derive a quasi-static flow model that accounts for liquid spreading within the fabric itself. Our implementation significantly extends standard numerical cloth and fluid models to support the diverse behaviors of wet fabric, and includes a numerical method tailored to cope with the challenging nonlinearities of the problem. We explore a range of fabric-water interactions to validate our model, including challenging animation scenarios involving splashing, wringing, and collisions with obstacles, along with qualitative comparisons against simple physical experiments.
Many computer graphics applications require high-intensity numerical simulation. We show that such computations can be performed efficiently on the GPU, which we regard as a full function streaming processor with high floating-point performance. We implemented two basic, broadly useful, computational kernels: a sparse matrix conjugate gradient solver and a regular-grid multigrid solver. Realtime applications ranging from mesh smoothing and parameterization to fluid solvers and solid mechanics can greatly benefit from these, evidence our example applications of geometric flow and fluid simulation running on NVIDIA's GeForce FX.
Filtering is critical for representing image-based detail, such as textures or normal maps, across a variety of scales. While mipmapping textures is commonplace, accurate normal map filtering remains a challenging problem because of nonlinearities in shading-we cannot simply average nearby surface normals. In this paper, we show analytically that normal map filtering can be formalized as a spherical convolution of the normal distribution function (NDF) and the BRDF, for a large class of common BRDFs such as Lambertian, microfacet and factored measurements. This theoretical result explains many previous filtering techniques as special cases, and leads to a generalization to a broader class of measured and analytic BRDFs. Our practical algorithms leverage a significant body of previous work that has studied lighting-BRDF convolution. We show how spherical harmonics can be used to filter the NDF for Lambertian and low-frequency specular BRDFs, while spherical von Mises-Fisher distributions can be used for high-frequency materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.