Background: The incidence of esophageal adenocarcinoma has risen dramatically over the past half century, and the underlying reasons are incompletely understood. Broad shifts to the upper gastrointestinal microbiome may be partly responsible. The goal of this study was to describe alterations in the esophageal microbiome that occur with progression from Barrett's esophagus to esophageal adenocarcinoma.Methods: A case-control study was performed of patients with and without Barrett's esophagus who were scheduled to undergo upper endoscopy. Demographic, clinical, and dietary intake data were collected, and esophageal brushings were collected during the endoscopy. 16S rRNA gene sequencing was performed to characterize the microbiome.Results: A total of 45 patients were enrolled and included in the analyses [16 controls; 14 Barrett's esophagus without dysplasia (NDBE); 6 low-grade dysplasia (LGD); 5 highgrade dysplasia (HGD); and 4 esophageal adenocarcinoma]. There was no difference in alpha diversity between non-Barrett's esophagus and Barrett's esophagus, but there was evidence of decreased diversity in patients with esophageal adenocarcinoma as assessed by Simpson index. There was an apparent shift in composition at the transition from LGD to HGD, and patients with HGD and esophageal adenocarcinoma had decreased Firmicutes and increased Proteobacteria. In addition, patients with HGD or esophageal adenocarcinoma had increased Enterobacteriaceae and Akkermansia muciniphila and reduced Veillonella. In the study population, patients taking proton pump inhibitors had increased Streptococcus and decreased Gram-negative bacteria overall.Conclusions: Shifts in the Barrett's esophagus-associated microbiome were observed in patients with HGD and esophageal adenocarcinoma, with increases in certain potentially pathogenic bacteria.Impact: The microbiome may play a role in esophageal carcinogenesis.
ObjectivesThe esophageal microbiome is composed of predominantly oral flora and is altered in reflux-related conditions including Barrett’s esophagus (BE). Changes to the esophageal microbiome may be reflected in the oral cavity. Assessing the oral microbiome thus represents a potential non-invasive method to identify patients with BE.MethodsPatients with and without BE undergoing upper endoscopy were prospectively enrolled. Demographics, clinical data, medications, and dietary intake were assessed. 16S rRNA gene sequencing was performed on saliva samples collected prior to endoscopy. Taxonomic differences between groups were assessed via linear discriminant analysis effect size (LEfSe). Logit models were used to develop microbiome signatures to distinguish BE from non-BE, assessed by area under the receiver operating curve (AUROC).ResultsA total of 49 patients were enrolled (control = 17, BE = 32). There was no significant difference in alpha diversity comparing all BE patients vs. controls. At the phylum level, the oral microbiome in BE patients had significantly increased relative abundance of Firmicutes (p = 0.005) and decreased Proteobacteria (p = 0.02). There were numerous taxonomic differences in the oral microbiome between BE and controls. A model including relative abundance of Lautropia, Streptococcus, and a genus in the order Bacteroidales distinguished BE from controls with an AUROC 0.94 (95% CI: 0.85–1.00). The optimal cutoff identified BE patients with 96.9% sensitivity and 88.2% specificity.ConclusionsThe oral microbiome in BE patients was markedly altered and distinguished BE with relatively high accuracy. The oral microbiome represents a potential screening marker for BE, and validation studies in larger and distinct populations are warranted.
IntroductionThere is increasing evidence that the microbiome contributes to esophageal disease. Diet, especially fiber and fat intake, is a known potent modifier of the colonic microbiome, but its impact on the esophageal microbiome is not well described. We hypothesized that dietary fiber and fat intake would be associated with a distinct esophageal microbiome.MethodsWe collected esophageal samples from 47 ambulatory patients scheduled to undergo endoscopy who completed a validated food frequency questionnaire quantifying dietary fiber and fat intake. Using 16S high-throughput sequencing, we determined composition of the esophageal microbiome and predicted functional capacity of microbiota based on fiber and fat intake.ResultsAmong all samples, the most abundant phyla were Firmicutes (54.0%), Proteobacteria (19.0%), Bacteroidetes (17.0%), Actinobacteria (5.2%), and Fusobacteria (4.3%). Increasing fiber intake was significantly associated with increasing relative abundance of Firmicutes (p = 0.04) and decreasing relative abundance of Gram-negative bacteria overall (p = 0.03). Low fiber intake was associated with increased relative abundance of several Gram-negative bacteria, including Prevotella, Neisseria, and Eikenella. Several predicted metabolic pathways differed between highest and lowest quartile of fiber intake. Fat intake was associated with altered relative abundance of few taxa, with no alterations at the phylum level and no changes in microbiome functional composition.ConclusionsDietary fiber, but not fat, intake was associated with a distinct esophageal microbiome. Diet should be considered an important modifier of the esophageal microbiome in future studies. Studies are also needed to elucidate how the effects of dietary fiber on the esophageal microbiome may contribute to esophageal disease.
INTRODUCTION: Although the microbiome is altered in various esophageal diseases, there is no direct evidence for a link between the oral or esophageal microbiome and underlying esophageal tissue. Here, we aimed to address these gaps through use of an antimicrobial mouth rinse to modify the esophageal microbiome and tissue gene expression. METHODS: In this randomized controlled trial, patients scheduled to undergo endoscopy for clinical indications used chlorhexidine mouth rinse or no treatment for 2 weeks before endoscopy. Oral swabs and saliva were collected at baseline and at follow-up, and the esophagus was sampled on the day of endoscopy. The microbiome was analyzed by 16S rRNA gene sequencing, and esophageal tissue gene expression was ascertained by RNA-Seq. RESULTS: Twenty subjects were enrolled and included in the analyses. Within individuals, the oral and esophageal microbiome composition was significantly correlated. Chlorhexidine treatment associated with significant alterations to the relative abundance of several esophageal bacterial taxa, and to expression of genes in the esophagus including reductions in periostin, claudin-18, chemokines CXCL1 and CXCL13 , and several members of the tumor necrosis factor receptor superfamily. A taxon in genus Haemophilus in the esophagus also associated with significant changes in tissue gene expression. DISCUSSION: The oral and esophageal microbiomes are closely related within individuals, and esophageal microbiome alterations correlate with tissue gene expression changes. The esophageal microbiome may act as an important cofactor that influences pathogenesis and outcomes of diseases such as eosinophilic esophagitis, gastroesophageal reflux, and Barrett's esophagus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.