The negative correlation between fattening and laying performance prevents breeding improvement in both laying performance and meat yield. Therefore, specialized chicken lines have been bred in order to achieve either an efficient production of high-quality eggs or high growth rates. As a result, day-old male chicks are culled in the layer hatchery, which poses animal welfare and ethical problems. Breeding companies, scientific groups, and hatcheries are attempting to resolve this issue, with a common aim to find feasible alternatives for the routine killing of male layer chicks. Some approaches aim to influence the sex ratio, while others target at the economically feasible use of the male layer offspring, such as the fattening of "laying hen brothers" or crossbreedings of layers and broilers to create "dual-purpose chickens." Another approach is the sex determination prior to hatch. One of the prerequisites of in ovo sex determination is a practicable method that can be used in industry. The analysis needs to be rapid, cost-efficient, and highly precise; in addition, negative impacts on hatching rate, animal health, and/or performance parameters should be limited. Furthermore, sex determination should be performed before the sensory nervous system's response of the chick embryo to certain or potentially harmful stimuli is developed, which according to current knowledge is before the d 7 of incubation.
In order to provide an alternative to day-old chick culling in the layer hatcheries, a noninvasive method for egg sexing is required at an early stage of incubation before onset of embryo sensitivity. Fluorescence and Raman spectroscopy of blood offers the potential for precise and contactless in ovo sex determination of the domestic chicken (Gallus gallus f. dom.) eggs already during the fourth incubation day. However, such kind of optical spectroscopy requires a window in the egg shell, is thus invasive to the embryo and leads to decreased hatching rates. Here, we show that near infrared Raman and fluorescence spectroscopy can be performed on perfused extraembryonic vessels while leaving the inner egg shell membrane intact. Sparing the shell membrane makes the measurement minimally invasive, so that the sexing procedure does not affect hatching rates. We analyze the effect of the membrane above the vessels on fluorescence signal intensity and on Raman spectrum of blood, and propose a correction method to compensate for it. After compensation, we attain a correct sexing rate above 90% by applying supervised classification of spectra. Therefore, this approach offers the best premises towards practical deployment in the hatcheries.
Culling of day-old male chicks in production of laying hen strains involves several millions of animals every year worldwide and is ethically controversial. In an attempt to provide an alternative, optical spectroscopy was investigated to determine nondestructively in ovo the sex of early embryos of the domestic chicken. The extraembryonic blood circulation system was accessed by producing a window in the egg shell and the flowing blood was illuminated with a near-infrared laser. The strong fluorescence and the weak Raman signals were acquired and spectroscopically analyzed between 800 and 1000 nm. The increase of fluorescence intensity between 3.5 and 11.5 days of incubation was found to be in agreement with the erythropoietic stages, thus enabling to identify hemoglobin as fluorescence source. Sex-related differences in the fluorescence spectrum were found at day 3.5, and principal component (PC) analysis showed that the blood of males was characterized by a specific fluorescence band located at ∼910 nm. Supervised classification of the PC scores enabled the determination of the sex of 380 eggs at day 3.5 of incubation with a correct rate up to 93% by combining the information derived from both fluorescence and Raman scattering. Graphical abstract The fluorescence of blood obtained in ovo by illumination of embryonic vessels with a IR laser displays spectral differences that can be employed for sexing of eggs in early stage of incubation, before onset of embryo sensitivity and without hindering its development into a healthy chick.
Male birds of egg-laying hen strains have no commercial value and are culled immediately after hatching, raising concerns for animal welfare. Existing experimental methods for in ovo sexing require taking samples and are applicable after embryos' sexual differentiation. We demonstrate that Raman spectroscopy enables contactless in ovo sex determination of the domestic chicken (Gallus gallus f. dom.) already at day 3.5 of egg incubation. A sexing accuracy of 90% was obtained by analyzing the spectra of blood circulating in the extraembryonic vessels. The measurement is damage-free and barely affects the hatching rate. Sex recognition is achieved before the onset of sensitivity. Therefore, Raman spectroscopy provides an alternative to the culling of 1-day-old male chicks in laying hen production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.