We show non-existence of non-trivial bi-infinite geodesics in the solvable last-passage percolation model with i.i.d. geometric weights. This gives the first example of a model with discrete weights where non-existence of nontrivial bi-infinite geodesics has been proven. Our proofs rely on the structure of the increment-stationary versions of the model, following the approach recently introduced by Balázs, Busani, and Seppäläinen. Most of our results work for a general weights distribution and we identify the two properties of the stationary distributions which would need to be shown in order to generalize the main result to a non-solvable setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.