With the rapid evolution of mobile devices, the concept of context aware applications has gained a remarkable popularity in recent years. Smartphones and tablets are equipped with a variety of sensors including accelerometers, gyroscopes, and GPS, pressure gauges, light and GPS sensors. Additionally, the devices become computationally powerful which allows real-time processing of data gathered by their sensors. Universal network access viaWiFi hot-spots and GSM network makes mobile devices perfect platforms for ubiquitous computing. Most of existing frameworks for context-aware systems, are usually dedicated to static, centralized, clientserver architectures. However, mobile platforms require from the context modeling language and inference engine to be simple and lightweight. The model should also be powerful enough to allow not only solving simple context identification tasks but more complex reasoning. The original contribution of the paper is a proposal of a new rule-based context reasoning platform tailored to the needs of such intelligent distributed mobile computing devices. It contains a proposal of a learning middleware supporting context acquisition. The platform design is based on a critical review and evaluation of existing solutions given in this paper. A preliminary evaluation of the platform is given along with use cases including a social system supporting crime detection and investigation.
In this paper, we consider the use of wearable sensors for providing affect-based adaptation in Ambient Intelligence (AmI) systems. We begin with discussion of selected issues regarding the applications of affective computing techniques. We describe our experiments for affect change detection with a range of wearable devices, such as wristbands and the BITalino platform, and discuss an original software solution, which we developed for this purpose. Furthermore, as a test-bed application for our work, we selected computer games. We discuss the state-of-the-art in affect-based adaptation in games, described in terms of the so-called affective loop. We present our original proposal of a conceptual design framework for games, called the affective game design patterns. As a proof-of-concept realization of this approach, we discuss some original game prototypes, which we have developed, involving emotion-based control and adaptation. Finally, we comment on a software framework, that we have previously developed, for context-aware systems which uses human emotional contexts. This framework provides means for implementing adaptive systems using mobile devices with wearable sensors.
This paper describes a new approach, the HeKatE methodology, to the design and development of complex rule-based systems for control and decision support. The main paradigm for rule representation, namely, eXtended Tabular Trees (XTT), ensures high density and transparency of visual knowledge representation. Contrary to traditional, flat rule-based systems, the XTT approach is focused on groups of similar rules rather than on single rules. Such groups form decision tables which are connected into a network for inference. Efficient inference is assured as only the rules necessary for achieving the goal, identified by the context of inference and partial order among tables, are fired. In the paper a new version of the language-XTT 2 -is presented. It is based on ALSV(FD) logic, also described in the paper. Another distinctive feature of the presented approach is a top-down design methodology based on successive refinement of the project. It starts with Attribute Relationship Diagram (ARD) development. Such a diagram represents relationships between system variables. Based on the ARD scheme, XTT tables and links between them are generated. The tables are filled with expert-provided constraints on values of the attributes. The code for rule representation is generated in a humanreadable representation called HMR and interpreted with a provided inference engine called HeaRT. A set of software tools supporting the visual design and development stages is described in brief.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.