The main objective of this work was to evaluate the effects of two machining processes on European oak wood surface characteristics. The relationships between wettability, free surface energy and machining methods were studied. Sawing and slicing, with or without sanding, were used to prepare surfaces prior to testing whether they produce surfaces with different characteristics. For the wood surfaces machined by slicing and sawing, there was a significant difference in contact angle measurements. This indicates that the influence of machining processes such as slicing and sawing on contact angle value is remarkable. Sanded surfaces showed good wettability and high process roughness.
The II law of thermodynamics is most often given in three supposedly equivalent formulations: two Clausius (I and II) and one Kelvin. The most general and indisputable entropy formulation belongs to Clausius (II). The earlier Clausius I principle determines the natural direction heat flow between bodies at different temperatures. On the other hand, the Kelvin principle states that it is impossible to completely convert heat into work. The author argues that the Kelvin principle is a weaker statement (or more strictly non-equivalent) than the Clausius I principle, and the latter is a weaker statement than Carnot principle, which is equivalent to Clausius II principle. As a result, the Kelvin principle and the Clausius I principle are not exhaustive formulations of the II law of thermodynamics. At the same time, it turns out that the Carnot principle becomes such a formulation. Apart from providing a complete set of proof and disproof, the author, indicates where the methodological errors were made in the alleged proof of the equivalence of the Kelvin principle and both Clausius principles.
This work concerns basic research on the concept of wood hardness in a sense similar to Brinell or in the modified sense of Monnin. The experimental part of this article is based on research carried out on beech wood with six indenters: three ball indenters of 10, 15 and 30 mm and three cylindrical indenters of 10, 15 and 30 mm. On the basis of measurements for a wide range of loads, relations analogous to Meyer power law of were obtained, with the exponent determined both for balls equal to 5/2 and for cylinders equal to 3/2. These exponents turned out to be exactly the arithmetic mean of exponents for ideally elastic and ideally plastic bodies. On this basis, new hardness formulae were proposed, taking into account Meyer law and the diameters of indenters. Therefore, the proposed two hardness formulae (for the ball and cylinder) are a generalization and development of Meyer hardness law.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.