The article presents a measurement system for a micro UAV designed at the Department of Avionics and Control Systems of Rzeszów University of Technology. Since the project is based on earlier projects, e.g.[[[[1[[[1, the introduction begins with their short presentation [they are mentioned in the introduction firs. Then, the current project is discussed. The major objective of the project is to create a miniature autopilot cooperating with navigation units, data transmission units and measurement units. The system is based on Polish technological solutions. The autopilot is designed as a single unit, however the system is open and it allows you to use different elements. The system development is also possible. In-flight testing will be realized with the use of two unmanned flying platforms equipped with an electrical engine and a piston engine. The total mass of the platforms is 5 kg and 25 kg respectively. The article presents the structure of the control and navigation system and then, the structure of the measurement system. The measurement units consist of a GPS receiver, an attitude and heading reference system (AHRS) and an air data computer (ADC). Similar configuration is used in other micro UAV solutions, such as Micropilot or Kestrel. Then, algorithms of the measurement system are described. Navigation is based on GPS data with a DGPS (Differential GPS) advanced module. If the measurement information is complete, GPS data are used to correct measurements from other units. The system estimates wind disturbances and calculates accelerometers errors. In the case of missing GPS signals implementation of low-cost sensors may lead to significant measurement errors, and hence navigation only by means of the INS is impossible. In such a case, navigation is realized with the use of an inertial navigation system (INS), the magnetic heading measurement and ADC. AHRS unit algorithms use quaternion algebra for attitude calculation. For correction, complementary filtering is implemented [, [. The correction signal for the attitude (pitch and roll angles) is calculated with the use of acceleration measurements. Measurements of accelerations and yaw rates are used for the correction switching mechanism, since in dynamic states signals calculated from accelerations cannot be used for correction. Heading is corrected by means of magnetic heading measurement. ADC algorithms are based on typical aerodynamic dependences.
During the AIM (advanced in-flight measurement techniques) and AIM2 projects, innovative modern techniques were developed. The purpose of the AIM project was to develop optical measurement techniques dedicated for flight tests. Such methods give information about aircraft elements deformation, thermal loads or pressure distribution, etc. In AIM2 the development of optical methods for flight testing was continued. In particular, this project aimed at the development of methods that could be easily applied in flight tests in an industrial setting. Another equally important task was to guarantee the synchronization of the classical measuring system with cameras. The PW-6U glider used in flight tests was provided by the Rzeszów University of Technology. The glider had all the equipment necessary for testing the IPCT (image pattern correlation technique) and IRT (infrared thermometry) methods. Additionally, equipment adequate for the measurement of typical flight parameters, registration and analysis has been developed. This article describes the designed system, as well as presenting the system’s application during flight tests. Additionally, the results obtained in flight tests show certain limitations of the IRT method as applied.
Purpose This paper aims to present a vision-based method for determination of the position of a fixed-wing aircraft that is approaching a runway. Design methodology/approach The method determines the location of an aircraft based on positions of precision approach path indicator lights and approach light system with sequenced flashing lights in the image captured by an on-board camera. Findings As the relation of the lighting systems to the touchdown area on the considered runway is known in advance, the detected lights, seen as glowing lines or highlighted areas, in the image can be mapped onto the real-world coordinates and then used to estimate the position of the aircraft. Furthermore, the colours of lights are detected and can be used as auxiliary information. Practical implications The presented method can be considered as a potential source of flight data for autonomous approach and for augmentation of manual approach. Originality/value In this paper, a feasibility study of this concept is presented and primarily validated.
Purpose This paper aims to describe an idea for an integration process and tests of flight parameters measurement system, which supports infrared thermography (IRT) boundary layer mapping. Design/methodology/approach The study of flow changes in the boundary layer with the use of IRT requires registration of the thermal images of the selected area of a wing or the fuselage, as well as synchronous recording of flight parameters. These tasks were realized by the supplementary measurement system mounted on the PW-6U glider. Two examples of the determination of the laminar-turbulent transition areas on the left wing of a PW-6U glider are also presented in the paper. Findings Optical methods can be used in several research areas, for example, aerodynamics and strength analysis. For instance, the measurement of the infrared radiation from surfaces with the use of IRT can be used for the measurement, with high accuracy, of surface temperature distribution. Moreover, the thermography is used for the analysis of the boundary layer. Performed in-flight experiments confirm the possibility of practical usage of the IRT method even on the board of a glider. Practical implications The use of optical methods will, in many cases, be less expensive than assembly of an additional measurement and data acquisition systems. Implementation of optical methods for industrial purposes has many advantages, and, hence, they will probably become very common in the future. Originality/value The study introduces advanced measurement and visualization techniques in general aviation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.