Optimization of economic aspects of microgrid operation in both grid-connected and islanded mode leads to contradictive definitions of optimality for both modes. There is no general agreement on how to cope with this duality. To address this issue, as well as modern energy market requirements and a better renewable energy utilization necessity in the case of large facilities, a comprehensive control solution utilizing the appropriate model is needed. In response, the authors propose a hybrid microgrid model covering fundamental features and designed to work in conjunction with two switched receding horizon control laws. A relevant controller is chosen according to the current microgrid operation mode and its cost function tailored to specific demands of the islanded or grid-connected operation. Performed research led to a new switched hybrid model predictive control approach focused on microgrid economic optimization. This approach utilizes an appropriate hybrid microgrid model also contributed by the authors. The introduced solution turned out to be effective in overall energy cost reduction in the case of large commercial facilities, regardless of grid-connection and renewable generation scenarios. Furthermore, it also provides satisfactory renewable energy and storage capabilities utilization in changing grid connection conditions.
MPC Driven control systems very often are requiring the introduction of a mechanism predicting the state of the object unavailable for measurements. Depending on the case, a different number of state variables will be unobtainable. Widely used systems to obtain essential data of the condition of an object are Luenberger state observer and different types of Kalman filters. The authors propose a new method of Luenberger observer synthesis based on Luenberger gain optimization using performance index corresponding to generalized system performance. The developed method allows us to obtain better-performing observer from the point of view of the adopted criterion, compared to similar estimators derived from the Sylvester equation and classic Kalman filters, even despite the occurrence of disturbances. The developed method will be presented on an example of an active suspension system with MPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.