Observational studies have shown abnormal changes in trimethylamine N-oxide (TMAO) levels in the peripheral circulatory system of Parkinson’s disease (PD) patients. TMAO is a gut microbiota metabolite that can cross the blood–brain barrier and is strongly related to neuroinflammation. Neuroinflammation is one of the pathological drivers of PD. Herein, we investigated the effect of TMAO on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model mice. TMAO pretreatment was given by adding 1.5% (w/v) TMAO to the drinking water of the mice for 21 days; then, the mice were administered MPTP (20 mg/kg, i.p.) four times a day to construct an acute PD model. Their serum TMAO concentrations, motor function, dopaminergic network integrity, and neuroinflammation were then assayed. The results showed that TMAO partly aggravated the motor dysfunction of the PD mice. Although TMAO had no effect on the dopaminergic neurons, TH protein content, and striatal DA level in the PD mice, it significantly reduced the striatal 5-HT levels and aggravated the metabolism of DA and 5-HT. Meanwhile, TMAO significantly activated glial cells in the striatum and the hippocampi of the PD mice and promoted the release of inflammatory cytokines in the hippocampus. In summary, higher-circulating TMAO had adverse effects on the motor capacity, striatum neurotransmitters, and striatal and hippocampal neuroinflammation in PD mice.
Accumulative studies suggest that inflammatory bowel disease (IBD) may cause multiple central nervous system (CNS) pathologies. Studies have found that indoleamine-2,3-dioxygenase (IDO, rate-limiting enzyme of the kynurenine (Kyn) pathway) deficient mice were protected from endotoxin induced cognitive impairment, and Kyn administration induced cognitive memory deficits in both control and IDO-deficient mice. However, there is no investigation of the brain Kyn pathway in IBD, thus we investigated whether dextran sulfate sodium (DSS)-induced colitis could cause dysregulation of Kyn pathway in brain, and also in serum. C57BL/6J mice were given drinking water with 2% DSS for 10 consecutive days to induce colitis. In serum, we found significant increase in Kyn and kynurenic acid (Kyna) level, which was regulated by IDO-1 and KAT2 (rate-limiting enzymes of Trp-Kyn-Kyna pathway). Similarly, by analyzing GEO datasets, higher IDO-1 levels in peripheral blood monocytes and colon of UC patients was found. Furthermore, the Kyn pathway was significantly upregulated in the cerebral cortex under the action of IDO-1 after DSS treatment, which ultimately induced the neurotoxic phenotype of astrocytes. To investigate whether gut microbiota is involved in IBD-induced Kyn pathway dysregulation, we performed intestinal flora 16S rRNA sequencing and found that DSS-induced colitis significantly altered the composition and diversity of the gut microbiota. Metabolic function analysis also showed that Tryptophan metabolism, NOD-like receptor signaling pathway and MAPK signaling pathway were significantly up-regulated in the 2% DSS group. A significant association between intestinal flora and Trp metabolism (both in serum and brain) was found by correlation analysis. Overall, this study revealed that DSS-induced colitis causes dysregulation of the Kyn pathway in serum and brain by affecting rate-limiting enzymes and intestinal flora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.