Smac mimetics induce apoptosis synergistically with TNF-alpha by triggering the formation of a caspase-8-activating complex containing receptor interacting protein kinase-1 (RIPK1). Caspase inhibitors block this form of apoptosis in many types of cells. However, in several other cell lines, caspase inhibitors switch the apoptotic response to necrosis. A genome wide siRNA screen revealed another member of the RIP kinase family, RIP3, to be required for necrosis. The expression of RIP3 in different cell lines correlates with their responsiveness to necrosis induction. The kinase activity of RIP3 is essential for necrosis execution. Upon induction of necrosis, RIP3 is recruited to RIPK1 to form a necrosis-inducing complex. Embryonic fibroblasts from RIP3 knockout mice are resistant to necrosis and RIP3 knockout animals are devoid of inflammation inflicted tissue damage in an acute pancreatitis model. These data indicate RIP3 as the determinant for cellular necrosis in response to TNF-alpha family of death-inducing cytokines.
We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.
Because adult lung tissue has limited regeneration capacity, lung transplantation is the primary therapy for severely damaged lungs. To explore whether lung tissue can be regenerated in vitro, we treated lungs from adult rats using a procedure that removes cellular components but leaves behind a scaffold of extracellular matrix that retains the hierarchical branching structures of airways and vasculature. We then used a bioreactor to culture pulmonary epithelium and vascular endothelium on the acellular lung matrix. The seeded epithelium displayed remarkable hierarchical organization within the matrix, and the seeded endothelial cells efficiently repopulated the vascular compartment. In vitro, the mechanical characteristics of the engineered lungs were similar to those of native lung tissue, and when implanted into rats in vivo for short time intervals (45 to 120 minutes) the engineered lungs participated in gas exchange. Although representing only an initial step toward the ultimate goal of generating fully functional lungs in vitro, these results suggest that repopulation of lung matrix is a viable strategy for lung regeneration.
Antibody responses to viral infections are sustained for decades by long-lived plasma cells (LLPCs). However, LLPCs have yet to be characterized in humans. Here we used CD19, CD38, and CD138 to identify four PC subsets in human bone marrow (BM). We found that the CD19−CD38hiCD138+ subset was morphologically distinct, differentially expressed PC-associated genes and exclusively contained PCs specific for viral antigens to which the subjects had not been exposed for over 40 years. Protein sequences of measles- and mumps-specific circulating antibodies were encoded for by CD19−CD38hiCD138+ PCs in the BM. Finally, we found that CD19−CD38hiCD138+ PCs had a distinct RNA transcriptome signature and human immunoglobulin heavy chain (VH) repertoire that was relatively uncoupled from other BM PC subsets and likely represents the B cell response’s “historical record” of antigenic exposure. Thus, our studies define human LLPCs and provide a mechanism for the life-long maintenance of anti-viral antibodies in the serum.
Macroautophagy (herein referred to as autophagy) is an evolutionarily conserved self-digestive process cells adapt to starvation and other stress responses. Upon starvation, autophagy is induced, providing cells with needed nutrient supplies. We report here that Unc-51-like kinase 1 (Ulk1), a key initiator for mammalian autophagy, undergoes dramatic dephosphorylation upon starvation, particularly at serine 638 and serine 758. Phosphorylations of Ulk1 are mediated by mammalian target-of-rapamycin (mTOR) kinase and adenosine monophosphate activated protein kinase (AMPK). AMPK interacts with Ulk1 in a nutrient-dependent manner. Proper phosphorylations on Ulk1 are crucial for Ulk1/AMPK association, as a single serine-to-alanine mutation (S758A) at Ulk1 impairs this interaction. Compared to the wild-type ULK1, this Ulk1-S758A mutant initiates starvation-induced autophagy faster at an early time point, but does not alter the maximum capacity of autophagy when starvation prolongs. This study therefore revealed previously unnoticed acute autophagy response to environmental changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.