Tumor metastasis is responsible for most cancer patients' deaths. Understanding the mechanism of metastasis is crucial for improving the cure rate for cancer. Here, we report that Gankyrin, a chaperone of ubiquitin-proteasome, has an essential role in breast cancer metastasis. We find that Gankyrin is highly overexpressed in human breast cancers and the expression correlates strongly with lymph node metastasis. Knocking down Gankyrin expression in highly metastatic human breast cancer cells significantly decreases cancer cell migration and invasion. Furthermore, we demonstrate that depletion of Gankyrin inhibits intrinsic Rac1 activity and induces large focal adhesions. Overexpression of Gankyrin accelerates focal adhesion turnover and increases cell migration. Notably, reduction of Gankyrin expression in mouse mammary tumor cell significantly decreases tumor metastasis to lung in animal models. Therefore, our findings suggest that Gankyrin is crucial for breast cancer metastasis and highlight the potential of Gankyrin as a therapeutic target for tumor metastasis.
For long-term orthopaedic implants, the creation of a surface that is repulsive to bacteria while adhesive to tissue cells represents a promising strategy to control infection. To obtain such multifunctional surfaces, two possible approaches were explored to incorporate a model antibiotic, rifampicin (Rf), into the osteogenic polycaprolactone (PCL)/chitosan (CHS) biomimetic nanofibre meshes by (1) blending Rf into the electrospinning solutions and then electrospinning into nanofibres (i.e., Rf-incorporating fibres), or (2) depositing Rf-containing poly(D,L-lacticco-glycolic) acid (PLGA) micro-patterns onto the PCL/ chitosan nanofibre meshes via ink-jet printing (i.e., Rfeluting micro-pattern/fibre). Rapid release of Rf from both meshes was measured even though a relatively slower release rate was obtained from the Rf-eluting micro-pattern ones. Antibacterial assay with Staphylococcus epidermidis showed that both mesh surfaces could effectively kill bacteria and prevent biofilm formation. However, only Rf-eluting micro-pattern meshes favoured the attachment, spreading and metabolic activity of preosteoblasts in the cell culture study. Furthermore, the Rf-eluting micro-pattern meshes could better support the osteogenic differentiation of preosteoblasts by up-regulating the gene expression of bone markers (type I collagen and alkaline phosphatase). Clearly, compared to Rf-incorporating nanofibre meshes, Rf-eluting micro-patterns could effectively prevent biofilm formation without sacrificing the osteogenic properties of PCL/chitosan nanofibre surfaces. This finding provides an innovative avenue to design multifunctional surfaces for enhancing bone tissue formation while controlling infection.
ABSTRACT. Bartonella henselae, an infectious agent causing catscratch disease and vasculoproliferative disorders in humans, is a fastidious facultative intracellular pathogen. The outer membrane proteins of B. henselae are key molecules that play a primary role in host-cell interactions. We isolated B. henselae outer membrane proteins, using the ionic detergent N-lauroyl sarcosine sodium salt and sodium carbonate, purification by two-dimensional (2-D) gel electrophoresis, and protein identification using mass spectrometry. Treatment with buffers containing ASB-14 and ZWITTERGENT 3-10 increased solubilization of B. henselae proteins, particularly proteins with basic pI. Three hundred and sixty- eight spots were detected from the sarcosine-insoluble outer membrane fraction; 94 distinct protein species were identified from 176 spots. In the outer membrane fraction from carbonate incubation, 471 spots were calculated and 259 spots were identified, which included 139 protein entries. There were six outer membrane proteins in the sarcosine-insoluble outer membrane fraction compared with nine outer membrane proteins from samples subjected to carbonate incubation. We used bioinformatic analysis to identify 44 outer membrane proteins by prediction of their domains and tertiary structures and documented the potential virulence factors. We established the 2-D reference maps of the outer membrane subproteome of B. henselae using the two different extraction methods, which were partly complementary to each other. Sodium carbonate extraction isolated low-abundance and basic proteins better than the lauroyl sarcosine sodium salt extraction, which enriched high-abundance porins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.