Computer simulation studies aimed at elucidating the phase behavior of crude oils inevitably require atomistically-detailed models of representative molecules. For the lighter fractions of crudes, such molecules are readily available, as the chemical composition can be resolved experimentally. Heavier fractions pose a challenge, on one hand due to their polydispersity and on the other due to poor description of the morphology of the molecules involved. The Quantitative Molecular Representation (QMR) approach is used here to generate a catalogue of 100 plausible asphaltene and resin structures based on elemental analysis and 1 H-13 C NMR spectroscopy experimental data. The computer-generated models are compared in the context of a review of previously proposed literature structures and categorized by employing their molecular weights, double bond equivalents (DBE) and hydrogen to carbon (H/C) ratios. Sample atomistic molecular dynamics simulations were carried out for two of the proposed asphaltene structures with contrasting morphologies, one island-type and one archipelago-type, at 7 wt% in either toluene or heptane. Both asphaltene models, which shared many characteristics in terms of average molecular weight, chemical composition and solubility parameters showed marked differences in their aggregation behavior. The example showcases the importance of considering diversity and polydispersity when considering molecular models of heavy fractions.
The SAFT-γ Mie group-contribution equation of state [ Papaioannou J. Chem. Phys. 2014 , 140 , 054107 ] is used to develop a transferable coarse-grained (CG) force-field suitable for the molecular simulation of linear alkanes. A heterogroup model is fashioned at the resolution of three carbon atoms per bead in which different Mie (generalized Lennard-Jones) interactions are used to characterize the terminal (CH-CH-CH-) and middle (-CH-CH-CH-) beads. The force field is developed by combining the SAFT-γ CG top-down approach [ Avendaño J. Phys. Chem. B 2011 , 115 , 11154 ], using experimental phase-equilibrium data for n-alkanes ranging from n-nonane to n-pentadecane to parametrize the intermolecular (nonbonded) bead-bead interactions, with a bottom-up approach relying on simulations based on the higher resolution TraPPE united-atom (UA) model [ Martin ; , Siepmann J. Phys. Chem. B 1998 , 102 , 2569 ] to establish the intramolecular (bonded) interactions. The transferability of the SAFT-γ CG model is assessed from a detailed examination of the properties of linear alkanes ranging from n-hexane ( n-CH) to n-octadecane ( n-CH), including an additional evaluation of the reliability of the description for longer chains such as n-hexacontane ( n-CH) and a prototypical linear polyethylene of moderate molecular weight ( n-CH). A variety of structural, thermodynamic, and transport properties are examined, including the pair distribution functions, vapor-liquid equilibria, interfacial tension, viscosity, and diffusivity. Particular focus is placed on the impact of incorporating intramolecular interactions on the accuracy, transferability, and representability of the CG model. The novel SAFT-γ CG force field is shown to provide a reliable description of the thermophysical properties of the n-alkanes, in most cases at a level comparable to the that obtained with higher resolution models.
A coarse-grained (CG) model for atactic polystyrene is presented and studied with classical molecular-dynamics simulations. The interactions between the CG segments are described by Mie potentials, with parameters obtained from a top-down approach using the SAFT-γ methodology. The model is developed by taking a CG model for linearchain-like backbones with parameters corresponding to those of an alkane and decorating it with side branches with parameters from a force field of toluene, which incorporate an "aromatic-like" nature. The model is validated by comparison with the properties of monodisperse melts, including the effect of temperature and pressure on density, as well as structural properties (the radius of gyration and end-to-end distance as functions of chain length). The model is employed within large-scale simulations that describe the temperature−composition fluid-phase behavior of binary mixtures of polystyrene in n-hexane and n-heptane. A single temperature-independent unlike interaction energy parameter is employed for each solvent to reproduce experimental solubility behavior; this is sufficient for the quantitative prediction of both upper and lower critical solution points and the transition to the characteristic "hourglass" phase behavior for these systems.
Fully atomistic simulations of models of asphaltenes in simple solvents have allowed the study of trends in aggregation phenomena and the understanding of the role that molecular structure plays therein. However, the detail included at this scale of molecular modeling is at odds with the required spatial and temporal resolution needed to fully understand the asphaltene aggregation. The computational cost required to explore the relevant scales can be reduced by employing coarse-grained (CG) models, which consist of lumping a few atoms into a single segment that is characterised by effective interactions. In this work CG force fields developed via the SAFT-γ [Müller, E.A., Jackson, G. (2014) Annu. Rev. Chem. Biomolec. Eng., 5, 405-427] equation of state (EoS) provide a reliable pathway to link the molecular description with macroscopic thermophysical data. A recent modification of the SAFT-VR EoS [Müller, E.A. and Mejía, A. (2017) Langmuir, 33, 11518-11529], that allows parametrizing homonuclear rings, is selected as the starting point to propose CG models for polycyclic aromatic hydrocarbons (PAHs). The new aromatic-core parameters, along with others published for simpler organic molecules, are adopted for the construction of asphaltene models by combining different chemical moieties in a group-contribution fashion. We apply the procedure to two previously reported asphaltene models and perform Molecular Dynamics simulations to validate the coarse-grained representation against benchmark systems of 27 asphaltenes in pure solvent (toluene or heptane) described in a fully atomistic fashion. An excellent match between both levels of description is observed for cluster size, radii of gyration, and relative-shape-anisotropy-factor distributions. We exploit the advantages of the CG representation by simulating systems containing up to 2000 asphaltene molecules in explicit solvent investigating the effect of asphaltene concentration, solvent composition, and temperature on aggregation. Upon employing large systems facilitated by the CG models, we observe stable continuous distributions of molecular aggregates at conditions away from the two-phase precipitation point. As a further example application, a widely accepted interpretation of cluster-size distributions in asphaltenic systems is challenged by performing system-size tests, reversibility proofs and time-dependence analysis. The coarse-graining procedure proposed is seen to be general and predictive, hence, can be applied to other asphaltenic molecular structures.
Wax appearance temperature (WAT), defined as the temperature at which the first solid paraffin crystal appears in a crude oil, is one of the key flow assurance indicators in the oil industry. Although there are several commonly-used experimental techniques to determine WAT, none provides unambiguous molecular-level information to characterize the phase transition between the homogeneous fluid and the underlying solid phase. Molecular Dynamics (MD) simulations employing the statistical associating fluid theory (SAFT) force field are used to interrogate the incipient solidification states of models for long-chain alkanes cooled from a melt to an arrested state. We monitor the phase change of pure long chain n-alkanes: tetracosane (C24H50) and triacontane (C30H62), and an 8-component surrogate n-alkane mixture (C12-C33) built upon the compositional information of a waxy crude. Comparison to Diffusion Ordered Spectroscopy Nuclear Magnetic Resonance (DOSY NMR) results allows the assessment of the limitations of the coarse-grained models proposed. We show that upon approach to freezing, the heavier components restrict their motion first while the lighter ones retain their mobility and help fluidize the mixture. We further demonstrate that upon sub-cooling of long n-alkane fluids and mixtures, a discontinuity arises in the slope of the self-diffusion coefficient with decreasing temperature, which can be employed as a marker for the appearance of an arrested state commensurate with conventional WAT measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.