The classical view of the immune system has changed by the discovery of novel T-helper (Th) subsets, including Th17 (IL-17A-producing cells). IL-17A participates in immune-mediated glomerulonephritis and more recently in inflammatory pathologies, including experimental renal injury. Peritoneal dialysis patients present chronic inflammation and Th1/Th2 imbalance, but the role of the Th17 response in peritoneal membrane damage has not been investigated. In peritoneal biopsies from dialyzed patients, IL-17A immunostaining was found mainly in inflammatory areas and was absent in the healthy peritoneum. IL-17A-expressing cells included lymphocytes (CD4+ and γδ), neutrophils, and mast cells. Elevated IL-17A effluent concentrations were found in long-term peritoneal dialysis patients. Studies in mice showed that repeated exposure to recombinant IL-17A caused peritoneal inflammation and fibrosis. Moreover, chronic exposure to dialysis fluids resulted in a peritoneal Th17 response, including elevated IL-17A gene and protein production, submesothelial cell infiltration of IL-17A-expressing cells, and upregulation of Th17 differentiation factors and cytokines. IL-17A neutralization diminished experimental peritoneal inflammation and fibrosis caused by chronic exposure to dialysis fluids in mice. Thus, IL-17A is a key player of peritoneum damage and it may be a good candidate for therapeutic intervention in peritoneal dialysis patients.
MC from PD effluent of patients treated with a PD fluid containing low GDP levels show fewer signs of EMT and the respective molecules than MC from patients treated with standard fluid, indicating a better preservation of the peritoneal membrane structure and a favourable outcome in patients using low-GDP fluid. It also confirms the hypothesis that the protection of EMT by GDP-reduced fluids is also present in vivo.
Mesothelial-to-mesenchymal transition (MMT) is an auto-regulated physiological process of tissue repair that in uncontrolled conditions such as peritoneal dialysis (PD) can lead to peritoneal fibrosis. The maximum expression of peritoneal fibrosis induced by PD fluids and other peritoneal processes is the encapsulating peritoneal sclerosis (EPS) for which no specific treatment exists. Tamoxifen, a synthetic estrogen, has successfully been used to treat retroperitoneal fibrosis and EPS associated with PD. Hence, we used in vitro and animal model approaches to evaluate the efficacy of Tamoxifen to inhibit the MMT as a trigger of peritoneal fibrosis. In vitro studies were carried out using omentum-derived mesothelial cells (MCs) and effluent-derived MCs. Tamoxifen blocked the MMT induced by transforming growth factor (TGF)-β1, as it preserved the expression of E-cadherin and reduced the expression of mesenchymal-associated molecules such as snail, fibronectin, collagen-I, α-smooth muscle actin, and matrix metalloproteinse-2. Tamoxifen-treatment preserved the fibrinolytic capacity of MCs treated with TGF-β1 and decreased their migration capacity. Tamoxifen did not reverse the MMT of non-epitheliod MCs from effluents, but it reduced the expression of some mesenchymal molecules. In mice PD model, we demonstrated that MMT progressed in parallel with peritoneal membrane thickness. In addition, we observed that Tamoxifen significantly reduced peritoneal thickness, angiogenesis, invasion of the compact zone by mesenchymal MCs and improved peritoneal function. Tamoxifen also reduced the effluent levels of vascular endothelial growth factor and leptin. These results demonstrate that Tamoxifen is a therapeutic option to treat peritoneal fibrosis, and that its protective effect is mediated via modulation of the MMT process.
Patients with ESRD undergoing peritoneal dialysis develop progressive peritoneal fibrosis, which may lead to technique failure. Recent data point to Th17-mediated inflammation as a key contributor in peritoneal damage. The leukocyte antigen CD69 modulates the setting and progression of autoimmune and inflammatory diseases by controlling the balance between Th17 and regulatory T cells (Tregs). However, the relevance of CD69 in tissue fibrosis remains largely unknown. Thus, we explored the role of CD69 in fibroproliferative responses using a mouse model of peritoneal fibrosis induced by dialysis fluid exposure under either normal or uremic status. We found that cd69 mice compared with wild-type (WT) mice showed enhanced fibrosis, mesothelial to mesenchymal transition, IL-17 production, and Th17 cell infiltration in response to dialysis fluid treatment. Uremia contributed partially to peritoneal inflammatory and fibrotic responses. Additionally, antibody-mediated CD69 blockade in WT mice mimicked the fibrotic response of cd69 mice. Finally, IL-17 blockade in cd69 mice decreased peritoneal fibrosis to the WT levels, and mixed bone marrow from cd69 and Rag2c mice transplanted into WT mice reproduced the severity of the response to dialysis fluid observed in cd69 mice, showing that CD69 exerts its regulatory function within the lymphocyte compartment. Overall, our results indicate that CD69 controls tissue fibrosis by regulating Th17-mediated inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.