Static magnetic field (SMF) has shown some possibilities for cancer therapies. In particular, the combinational effect between SMF and anti-cancer drugs has drawn scientists’ attentions in recent years. However, the underlying mechanism for the drug-specific synergistic effect is far from being understood. Besides, the drugs used are all conventional chemotherapy drugs, which may cause unpleasant side effects. In this study, our results demonstrate for the first time that SMF could enhance the anti-cancer effect of natural compound, capsaicin, on HepG2 cancer cells through the mitochondria-dependent apoptosis pathway. We found that the synergistic effect could be due to that SMF increased the binding efficiency of capsaicin for the TRPV1 channel. These findings may provide a support to develop an application of SMF for cancer therapy. The present study offers the first trial in combining SMF with natural compound on anti-cancer treatment, which provides additional insight into the interaction between SMF and anti-cancer drugs and opens the door for the development of new strategies in fighting cancer with minimum cytotoxicity and side effects.
As the most common type of neurodegenerative diseases (NDDs), Alzheimer’s disease (AD) is thought to be caused mainly by the excessive aggregation of β-amyloid protein (Aβ). However, a growing number of studies have found that reactive oxygen species (ROS) play a key role in the onset and progression of AD. The present study aimed to probe the neuroprotective effect of high-frequency low-intensity pulsed electric field (H-LIPEF) for SH-SY5Y cells against hydrogen peroxide (H2O2) and Aβ-induced cytotoxicity. By looking in a systematic way into the frequency- and amplitude-dependent neuroprotective effect of pulsed electric field (PEF), the study finds that H-LIPEF at 200 Hz produces the optimal protective effect for SH-SY5Y cells. The underlying mechanisms were confirmed to be due to the activation of extracellular signal-regulated kinase (ERK) pathway and the downstream prosurvival and antioxidant proteins. Because the electric field can be modified to focus on specific area in a non-contact manner, the study suggests that H-LIPEF holds great potential for treating NDDs, whose effect can be further augmented with the administering of drugs or natural compounds at the same time.
With the expansion of the aged population, it is predicted that neurodegenerative diseases (NDDs) will become a major threat to public health worldwide. However, existing therapies can control the symptoms of the diseases at best, rather than offering a fundamental cure. As for the complex pathogenesis, clinical and preclinical researches have indicated that oxidative stress, a central role in neuronal degeneration, is a possible therapeutic target in the development of novel remedies. In this study, the motor neuron-like cell line NSC-34 was employed as an experimental model in probing the effects induced by the combination of non-invasive low intensity pulsed electric field (LIPEF) and fucoidan on the H2O2-induced neuron damage. It was found that single treatment of the LIPEF could protect the NSC-34 cells from oxidative stress, and the protective effect was enhanced by combining the LIPEF and fucoidan. Notably, it was observed that single treatment of the LIPEF obviously suppressed the H2O2-enhanced expression of ROCK protein and increased the phosphorylation of Akt in the H2O2-treated NSC-34 cells. Moreover, the LIPEF can be easily modified to concentrate on a specific area. Accordingly, this technique can be used as an advanced remedy for ROCK inhibition without the drawback of drug metabolism. Therefore, we suggest the LIPEF would be a promising strategy as a treatment for motor neurodegeneration and warrant further probe into its potential in treating other neuronal degenerations.
Most existing cancer treatments involve high-cost chemotherapy and radiotherapy, with major side effects, prompting effort to develop alternative treatment modalities. It was reported that the combination of thermal-cycling hyperthermia (TC-HT) and phenolic compound exhibited a moderate cytotoxic effect against human pancreatic cancer PANC-1 cells. In this study, we investigate the efficacy of triple combination in PANC-1 cancer cells by adopting low-intensity pulsed electric field (LIPEF) to couple with TC-HT and CGA (chlorogenic acid). The study finds that this triple combination can significantly impede the proliferation of PANC-1 cells, with only about 20% viable cells left after 24h, whereas being nontoxic to normal cells. The synergistic activity against the PANC-1 cells was achieved by inducing G2/M phase arrest and apoptosis, which were associated with up-regulation of p53 and coupled with increased expression of downstream proteins p21 and Bax. Further mechanism investigations revealed that the cytotoxic activity could be related to mitochondrial apoptosis, characterized by the reduced level of Bcl-2, mitochondrial dysfunction, and sequential activation of caspase-9 and PARP. Also, we found that the triple treatment led to the increase of intracellular reactive oxygen species (ROS) production. Notably, the triple treatment-induced cytotoxic effects and the elevated expression of p53 and p21 proteins as well as the increased Bax/Bcl-2 ratio, all could be alleviated by the ROS scavenger, N-acetyl-cysteine (NAC). These findings indicate that the combination of CGA, TC-HT, and LIPEF may be a promising modality for cancer treatment, as it can induce p53-dependent cell cycle arrest and apoptosis through accumulation of ROS in PANC-1 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.