Over the past decade, the most common approach to creating liquid shedding surfaces has been to amplify the effects of nonwetting surface chemistry, using micro/ nanotexturing to create superhydrophobic and superoleophobic surfaces. Recently, an alternative approach using impregnation of micro/nanotextured surfaces with immiscible lubricating liquids to create slippery liquid-infused porous surfaces (SLIPS) has been developed. These types of surfaces open up new opportunities to study the mechanism of evaporation of sessile droplets in zero contact angle hysteresis situations where the contact line is completely mobile. In this study, we fabricated surfaces consisting of square pillars (10−90 μm) of SU-8 photoresist arranged in square lattice patterns with the center-to-center separation between pillars of 100 μm, on which a hydrophobic coating was deposited and the textures impregnated by a lubricating silicone oil. These surfaces showed generally low sliding angles of 1°or less for small droplets of water. Droplet profiles were more complicated than on nonimpregnated surfaces and displayed a spherical cap shape modified by a wetting ridge close to the contact line due to balancing the interfacial forces at the line of contact between the droplet, the lubricant liquid and air (represented by a Neumann triangle). The wetting ridge leads to the concept of a wetting "skirt" of lubricant around the base of the droplet. For the SLIP surfaces, we found that the evaporation of small sessile droplets (∼2 mm in diameter) followed an ideal constant contact angle mode where the apparent contact angle was defined from the intersection of the substrate profile with the droplet spherical cap profile. A theoretical model based on diffusion controlled evaporation was able to predict a linear dependence in time for the square of the apparent contact radius. The experimental data was in excellent quantitative agreement with the theory and enabled estimates of the diffusion constant to be obtained.
Often wetting is considered from the perspective of a single surface of a rigid substrate and its topographical properties such as roughness or texture. However, many substrates, such as membranes and meshes, have two useful surfaces. Such flexible substrates also offer the potential to be formed into structures with either a double-sided surface (e.g. by joining the ends of a mesh as a tape) or a single-sided surface (e.g. by ends with a half-twist). When a substrate possesses holes, it is also possible to consider how the spaces in the substrate may be connected or disconnected. This combination of flexibility, holes and connectedness can therefore be used to introduce topological concepts, which are distinct from simple topography. Here, we present a method to create a Slippery Liquid-Infused Porous Surface (SLIPS) coating on flexible conformable doubled-sided meshes and for coating complex geometries. By considering the flexibility and connectedness of a mesh with the surface properties of SLIPS, we show it is possible to create double-sided SLIPS materials with high droplet mobility and droplet control on both faces. We also exemplify the importance of flexibility using a mesh-based SLIPS pipe capable of withstanding laminar and turbulent flows for 180 and 90 minutes, respectively. Finally, we discuss how ideas of topology introduced by the SLIPS mesh might be extended to create completely new types of SLIPS systems, such as Mobius strips and auxetic metamaterials.
Arsenic
emitted from coal-fired flue gas poses a threat to human
health and the ecological environment due to its high toxicity and
bioaccumulation. In this work, the microscopic spherical α-Fe2O3 sorbent was prepared by a one-step hydrothermal
method to effectively capture arsenic in the flue gas. The effects
of reaction temperature, sulfur dioxide (SO2), nitric oxide
(NO), oxygen (O2), and inlet arsenic concentration on its
adsorption performance were investigated. The results showed that
the most suitable adsorption temperature was 600 °C, and As2O3(g) was finally fixed in the product in the form
of FeAsO4. SO2 and O2 played a positive
role in the adsorption of arsenic, while NO displayed a slight effect
on the adsorption of arsenic. In addition, the arsenic adsorption
capacity improved with the increase of the inlet arsenic concentration.
Based on its excellent arsenic removal performance and SO2 resistance performance, the α-Fe2O3 sorbent
can be considered a promising material for arsenic removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.