Investigations on the cytotoxic effects of the crude methanol and fractionated extracts (hexane, ethyl acetate) C. mangga against six human cancer cell lines, namely the hormone-dependent breast cell line (MCF-7), nasopharyngeal epidermoid cell line (KB), lung cell line (A549), cervical cell line (Ca Ski), colon cell lines (HCT 116 and HT-29), and one non-cancer human fibroblast cell line (MRC-5) were conducted using an in-vitro neutral red cytotoxicity assay. The crude methanol and fractionated extracts (hexane and ethyl acetate) displayed good cytotoxic effects against MCF-7, KB, A549, Ca Ski and HT-29 cell lines, but exerted no damage on the MRC-5 line. Chemical investigation from the hexane and ethyl acetate fractions resulted in the isolation of seven pure compounds, namely (E)-labda-8(17),12-dien-15,16-dial (1), (E)-15,16-bisnor-labda-8(17),11-dien-13-on (2), zerumin A (3), β-sitosterol, curcumin, demethoxycurcumin and bis-demethoxycurcumin. Compounds 1 and 3 exhibited high cytotoxic effects against all six selected cancer cell lines, while compounds 2 showed no anti-proliferative activity on the tested cell lines. Compound 1 also demonstrated strong cytotoxicity against the normal cell line MRC-5. This paper reports for the first time the cytotoxic activities of C. mangga extracts on KB, A549, Ca Ski, HT-29 and MRC-5, and the occurrence of compound 2 and 3 in C. mangga.
BackgroundCancer has been one of the leading causes of mortality in this era. Ruta angustifolia L. Pers has been traditionally used as an abortifacient, antihelmintic, emmenagogue and ophthalmic. In Malaysia and Singapore, the local Chinese community used it for the treatment of cancer.MethodsIn this study, the methanol and fractionated extracts (hexane, chloroform, ethyl acetate and water) of R. angustifolia were tested for its cytotoxicity using the sulforhodamide (SRB) cytotoxicity assay against HCT-116, A549, Ca Ski and MRC5 cell lines. Chemical isolation was carried out by using the high performance liquid chromatography (HPLC) and the isolated compounds were tested for its cytotoxicity against A549 cell line. Cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. The externalisation of phosphatidylserine was observed through FITC-labelling Annexin V/PI assay whilst DNA fragmentation was observed through the TUNEL assay. Other indication of apoptosis occuring through the mitochondrial pathway were the attenuation of mitochondrial membrane potential and increase in ROS production. Activation of caspase 9 and 3 were monitored. Western blot analysis was done to show the expression levels of apoptotic proteins.ResultsThe chloroform extract (without chlorophyll) exhibited the highest cytotoxic activity with IC50 of 10.1 ± 0.15 μg/ml against A549 cell line. Further chemical investigation was thus directed to this fraction which led to the isolation of 12 compounds identified as graveoline, psoralen, kokusaginine, methoxysalen, bergapten, arborinine, moskachan B, chalepin, moskachan D, chalepensin, rutamarin and neophytadiene. Among these compounds, chalepin exhibited excellent cytotoxicity against A549 cell line with an IC50 value of 8.69 ± 2.43 μg/ml (27.64 μM). In western blot analysis, expression of p53, truncated Bid, Bax and Bak while the anti-apoptotic proteins Bcl-2, survivin, XIAP, Bcl-XL,cFLIP decreased in a time-dependent manner when A549 cells were treated with 36 μg/ml of chalepin. In addition, the level of PARP was found to decrease.ConclusionHence these findings indicated that chalepin-induced cell death might involve the intrinsic mitochodrial pathway resulting in the upregulation of pro-apoptotic proteins and downregulation of anti-apoptotic proteins. Thus, chalepin could be an excellent candidate for the development of an anticancer agent.Electronic supplementary materialThe online version of this article (doi:10.1186/s12906-016-1368-6) contains supplementary material, which is available to authorized users.
Dual choice bioassays were used to evaluate the antifeedant property of essential oil and methanolic extract of Alpinia galanga (L.) (locally known as lengkuas) against two species of termites, Coptotermes gestroi (Wasmann) and Coptotermes curvignathus (Holmgren) (Isoptera: Rhinotermitidae). A 4-cm-diameter paper disc treated with A. galanga essential oil and another treated with either methanol or hexane as control were placed in a petri dish with 10 termites. Mean consumption of paper discs (miligram) treated with 2,000 ppm of essential oil by C. gestroi was 3.30 ± 0.24 mg and by C. curvignathus was 3.32 ± 0.24 mg. A. galanga essential oil showed significant difference in antifeedant effect, 2,000 ppm of A. galanga essential oil was considered to be the optimum concentration that gave maximum antifeedant effect. The essential oil composition was determined using gas chromatography-mass spectrometry. The major component of the essential oil was 1,8-cineol (61.9%). Antifeedant bioassay using 500 ppm of 1,8-cineol showed significant reduction in paper consumption by both termite species. Thus, the bioactive agent in A. galangal essential oil causing antifeeding activity was identified as 1,8-cineol. Repellent activity shows that 250 ppm of 1,8-cineol caused 50.00 ± 4.47% repellency for C. gestroi, whereas for C. curvignathus 750 ppm of 1,8-cineol was needed to cause similar repellent activity (56.67 ± 3.33%). C. curvignathus is more susceptible compare to C. gestroi in Contact Toxicity study, the lethal dose (LD50) of C. curvignathus was 945 mg/kg, whereas LD50 value for C. gestroi was 1,102 mg/kg. Hence 1,8-cineol may be developed as an alternative control against termite in sustainable agriculture practices.
Background: Ginger is a popular spice and food preservative. The rhizomes of the common ginger have been used as traditional medicine to treat various ailments. 6-Shogaol, a pungent compound isolated from the rhizomes of jahe gajah (Zingiber officinale var officinale) has shown numerous pharmacological activities, including neuroprotective and anti-neuroinflammatory activities. The aim of this study was to investigate the potential of 6-shogaol to mimic the neuritogenic activity of nerve growth factor (NGF) in rat pheochromocytoma (PC-12) cells.
The early sign of apoptosis is consistent with the cell cycle arrest at the G0/G1 checkpoint which suggests that the changes on the cell cycle lead to the induction of apoptosis in HT29.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.