Accumulating evidence indicates that circular RNAs (circR-NAs) are vital regulators of various biological functions involved in the progression of multiple cancers. Circular F-box and WD repeat domain containing 7 (circFBXW7) (hsa_circ_0001451) has been reported to act as a tumor suppressor by encoding a novel protein in glioma; however, its functions and mechanisms in triple-negative breast cancer (TNBC) remain elusive. In the current study, we validated by qRT-PCR that circFBXW7 was downregulated in TNBC cell lines and found that low expression of circFBXW7 was associated with poorer clinical outcomes. circFBXW7 expression was negatively correlated with tumor size and lymph node metastasis, and it was an independent prognostic factor for TNBC patients. We performed cell proliferation, colony formation, transwell, wound-healing, and mouse xenograft assays to confirm the functions of circFBXW7. Overexpression of circFBXW7 obviously inhibited cell proliferation, migration, and tumor growth in both in vitro and in vivo assays. Luciferase reporter assays and RNA immunoprecipitation assays revealed that circFBXW7 serves as a sponge of miR-197-3p and suppresses TNBC growth and metastasis by upregulating FBXW7 expression. In addition, the FBXW7-185aa protein encoded by circFBXW7 inhibited the proliferation and migration abilities of TNBC cells by increasing the abundance of FBXW7 and inducing c-Myc degradation. In summary, our research demonstrated that circFBXW7 sponges miR-197-3p and encodes the FBXW7-185aa protein to suppress TNBC progression through upregulating FBXW7 expression. Thus, circFBXW7 may act as a therapeutic target and prognostic biomarker for TNBC.
BackgroundIncreasing studies has found that circular RNAs (circRNAs) play vital roles in cancer progression. But the expression profile and function of circRNAs in triple-negative breast cancer (TNBC) are unclear.MethodsWe used a circRNA microarray to explore the circRNA expression profile of TNBC. The expression of the top upregulated circRNA, circKIF4A, was confirmed by qRT-PCR in breast cancer cell lines and tissues. Kaplan-Meier survival analysis was conducted to analyze the clinical impact of circKIF4A on TNBC. A series of experiments was performed to explore the functions of circKIF4A in TNBC progression, such as cell proliferation and migration. We investigated the regulatory effect of circKIF4A on miRNA and its target genes to explore the potential regulatory mechanisms of circKIF4A in TNBC.ResultsqRT-PCR analyses verified that circKIF4A was significantly upregulated and positively associated with poorer survival of TNBC. The inhibition of circKIF4A suppressed cell proliferation and migration in TNBC. Luciferase reporter assay and RNA immunoprecipitation assay revealed that circKIF4A and KIF4A could bind to miR-375 and that circKIF4A regulated the expression of KIF4A via sponging miR-375.ConclusionsThe circKIF4A-miR-375-KIF4A axis regulates TNBC progression via the competitive endogenous RNA (ceRNA) mechanism. circKIF4A may therefore serve as a prognostic biomarker and therapeutic target for TNBC.Electronic supplementary materialThe online version of this article (10.1186/s12943-019-0946-x) contains supplementary material, which is available to authorized users.
Background: Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer with highly invasive ability and metastatic nature to the lymph nodes. Long non-coding RNAs (lncRNAs) have been widely explored in cancer tumorigenesis and progression. However, their roles in TNBC lymph node metastasis remains rarely studied. Methods: The expression of lncRNA highly upregulated in metastatic TNBC (HUMT) in cell lines and tissues was detected by quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). RNA immunoprecipitation (RIP) and RNA pulldown were used to verify the interaction between lncRNA and protein. Chromatin immunoprecipitation (CHIP) and dCas9-gRNA-guided chromatin immunoprecipitation (dCas9-CHIP) were conducted to identify the specific binding site of HUMT-YBX1 complex. Western blot was used to detect the downstream of HUMT. Results: HUMT was significantly upregulated in lymph node invasive cells and predicted poorer clinical prognosis. Functional study indicated that HUMT promoted lymphangiogenesis and lymph node metastasis. Bioinformatic analysis and qRT-PCR showed that the high expression of HUMT was correlated with the hypomethylation status of its promoter region. Further, HUMT recruited Y-box binding protein 1 (YBX1) to form a novel transcription complex and activated the expression of forkhead box k1 (FOXK1), thus enhancing the expression of vascular endothelial growth factor C (VEGFC). The therapeutic value was further validated in patient-derived xenograft (PDX) models, and a combined marker panel exhibited a better prognostic value for TNBC in receiver operating characteristic (ROC) analysis. Conclusions: Our study identified a novel TNBC lymph node metastasis-associated lncRNA, which promoted TNBC progression and indicated a novel biomarker and potential therapeutic target for TNBC lymph node metastasis.
Aim: To investigate the role of circRNAs in triple-negative breast cancer (TNBC) and the underlying mechanisms. Materials & methods: We performed circRNA microarrays to explore the expression profiles of TNBC cell lines. Experiments in vitro and in vivo were conducted to explore the effects of circPLK1 on tumor proliferation and metastasis as well as the interaction between circPLK1, miR-296-5p and PLK1 in TNBC. Results & conclusion: CircPLK1 was significantly upregulated in TNBC and associated with poor survivals. CircPLK1 knockdown inhibited cell growth and invasion in vitro as well as tumor occurrence and metastasis in vivo. CircPLK1-miR-296-5p- PLK1 axis regulates tumor progression by ceRNA mechanism in TNBC, indicating that circPLK1 may serve as a prognostic factor and novel therapeutic target for TNBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.