Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system.
2D vertical stacking and lateral stitching growth of monolayer (ML) hexagonal transition-metal dichalcogenides are reported. The 2D heteroepitaxial manipulation of MoS2 and WS2 MLs is achieved by control of the 2D nucleation kinetics during the sequential vapor-phase growth. It enables the creation of hexagon-on-hexagon unit-cell stacking and hexagon-by-hexagon stitching without interlayer rotation misfits.
Rv1106c (
hsd
; 3β-hydroxysteroid dehydrogenase) is required by
Mycobacterium tuberculosis
for growth on cholesterol as a sole carbon source, whereas Rv3409c is not. Mutation of Rv1106c does not reduce
Mycobacterium tuberculosis
growth in infected macrophages or guinea pigs. We conclude that cholesterol is not required as a nutritional source during infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.