Summary
The increasing amount of solid waste is becoming a significant problem that needs to be addressed urgently. The reliable and accurate classification method is a crucial step in waste disposal because different types of wastes have different disposal ways. The existing waste classification models driven by deep learning are not easy to achieve accurate results and still need to be improved due to the various architecture networks adopted. Their performance on different datasets is varied, and there is also a lack of specific large‐scale datasets for training. We propose a new combination classification model based on three pretrained CNN models (VGG19, DenseNet169, and NASNetLarge) for processing the ImageNet database and achieve high classification accuracy. In our proposed model, the transfer learning model based on each pretrained model is constructed as a candidate classifier, and the optimal output of three candidate classifiers is selected as the final classification result. The experiments based on two waste image datasets demonstrate that the proposed model achieves 96.5% and 94% classification accuracy and outperforms several counterpart methods.
Detection and analysis of traffic anomalies are important for the development of intelligent transportation systems. In particular, the root causes of traffic anomalies in road networks as well as their propagation and influence to the surrounding areas are highly meaningful. The root cause analysis of traffic anomalies aims to identify those road segments, where the traffic anomalies are detected by the traffic statuses significantly deviating from the usual condition and are originated due to incidents occurring in those roads such as traffic accidents or social events. The existing methods for traffic anomaly root cause analysis detect all traffic anomalies first and then apply, implicitly or explicitly, specified causal propagation rules to infer the root cause. However, these methods require reliable detection techniques to accurately identify all traffic anomalies and extensive domain knowledge of city traffic to specify plausible causal propagation rules in road networks. In contrast, this paper proposes an innovative and integrated root cause analysis method. The proposed method is featured by 1) defining a visible outlier index as the probabilistic indicator of traffic anomalies/disturbances and 2) automatically learning spatiotemporal causal relationship from historical data to build an uneven diffusion model for root cause analysis. The accuracy and effectiveness of the proposed method have been demonstrated by experiments conducted on a trajectory dataset with 2.5 billion location records of 27 266 taxies in Shenzhen city.INDEX TERMS Root cause analysis, traffic anomalies, spatiotemporal causal relationship, visible outlier index, uneven diffusion model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.