Nonlinear oscillation is an increasingly important and extremely interesting topic in engineering. This article completely reviews a simple method proposed by Ji-Huan He and successfully establishes a fractal undamped Duffing equation through the two-scale fractal derivative in a fractal space. Its variational principle is established, and the two-scale transform method and the fractal frequency formula are adopted to find the approximate frequency of the fractal oscillator. The numerical result shows that He’s frequency formula is a unique tool for the fractal equations.
The pull-in behavior is an inherent property of the micro-electromechanical oscillator. The bisection method and an iterative method are introduced to find its pull-in voltage, and the main factors affecting the pull-in voltage are elucidated. The simple and efficient operability is demonstrated through theoretical analysis and result comparison.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.