Reactive oxygen species (ROS) elicited by oxidative stress are widely recognized as a major initiator in the dege-neration of dopaminergic neurons distinctive of Parkinson's disease (PD). The interaction of ROS with mitochondria triggers sequential events in the mitochondrial cell death pathway, which is thought to be responsible for ROS-mediated neurodegeneration in PD. α-lipoic acid (LA) is a pleiotropic compound with potential pharmacotherapeutic value against a range of pathophysiological insults. Its protective actions against oxidative damage by scavenging ROS and reducing production of free radicals have been reported in various in vitro and in vivo systems. This study analyzed the ability of LA to protect PC12 neuronal cells from toxicity of 1-methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) which is known to kill dopaminergic neurons selectively and to cause severe parkinsonism-like symptoms in humans and primate animals. Our results demonstrate that the apoptosis of PC12 cells elicited by MPP+ could be significantly prevented by pretreatment with LA for 1 h. In addition, LA inhibits intercellular ROS levels and the mitochondrial transmembrane permeability, the key players in the pathogenesis of PD, thereby protecting dopaminergic neuronal cells against oxidative damage.
Oxidative stress is widely considered as a central event in the pathogenesis of Parkinson's disease (PD). The mechanisms underlying the oxidative damage-mediated loss of dopaminergic neurons in PD are not yet fully understood. Accumulating evidence has indicated that oxidative DNA damage plays a crucial role in programmed neuronal cell death, and is considered to be at least partly responsible for the degeneration of dopaminergic neurons in PD. This process involves a number of signaling cascades and molecular proteins. Proliferating cell nuclear antigen (PCNA) is a pleiotropic protein affecting a wide range of vital cellular processes, including chromatin remodelling, DNA repair and cell cycle control, by interacting with a number of enzymes and regulatory proteins. In the present study, the exposure of PC12 cells to 1-methyl-4-phenylpyridinium (MPP+) led to the loss of cell viability and decreased the expression levels of PCNA in a dose- and time-dependent manner, indicating that this protein may be involved in the neurotoxic actions of MPP+ in dopaminergic neuronal cells. In addition, a significant upregulation in p53 expression was also observed in this cellular model of PD. p53 is an upstream inducer of PCNA and it has been recognized as a key contributor responsible for dopaminergic neuronal cell death in mouse models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. This indicates that MPP+-induced oxidative damage is mediated by the downregulation of PCNA through the p53 pathway in a cellular model of PD. Thus, our results may provide some novel insight into the molecular mechanisms responsible for the development of PD and provide new possible therapeutic targets for the treatment of PD.
The mitochondria are the most important cytoplasmic organelles in determining cell survival and death. Mitochondrial dysfunction leads to a wide range of disorders, including neurodegenerative diseases. The central events in the mitochondrial‑dependent cell death pathway are the activation of the mitochodrial permeability transition pore (mPTP) and the disruption of mitochondrial membrane potential, which cause the release of apoptogenic molecules and finally lead to cell death. This is thought to be at least partly responsible for the loss of dopaminergic neurons in Parkinson's disease (PD); thus, the attenuation of mitochondrial dysfunction may contribute to alleviating the severity and progression of this disease. Guanosine is a pleiotropic molecule affecting multiple cellular processes, including cellular growth, differentiation and survival. Its protective effects on the central nervous system and and on several cell types by inhibiting apoptosis have been shown in a number of pathological conditions. This study aimed to analyze the ability of guanosine to protect neuronal PC12 cells from the toxicity induced by 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which mediates selective damage to dopaminergic neurons and causes irreversible Parkinson-like symptoms in humans and primates. Our results demonstrated that the apoptosis of PC12 cells induced by MPP+ was significantly prevented by pre-treatment for 3 h with guanosine. In addition, guanosine attenuated the MPP+-induced collapse of mitochondrial transmembrane potential and prevented the sebsequent activation of caspase-3, thereby protecting dopaminergic neurons against mitochondrial stress-induced damage.
It contains a 2,s-dihydroxynaphthoquinone chromophore, substituted in position 3 by an unsaturated side chain carrying a terminal hernimalonate moiety. Hornotrichione (7) differs by the presence of two additional CH, groups in the side chain. It co-occurs with arcyriaflavin B (5), arcyriaflavin C (6) and further pigments in Meratrichia uesparium.Schleimpilze (Myxetozoa) 2, durchlaufen in ihrem Lebenscyclus sowohl ein tierahnliches Plasmodienstadium als auch ein pflanzenahnliches Fruktifizierungsstadium. Sie bereiten daher den Taxonomen erhebliche Probleme und werden entweder dem Tier-2) oder Pflanzenreich 3, zugerechnet . Die Fruchtkorper vieler Arten der Unterklasse Myxomycetes (Myxogastria) sind auffdlig gefarbt, jedoch liegen bisher auDer orientierenden Unters~chungen~) und dem Nachweis von Carotinoiden in Lycogulu epidendron ') kaum Arbeiten zur Chemie ihrer Pigmente vor. Nachdem wir kurzlich neuartige Indolfarbstoffe aus Arcyriu-Arten isolieren konnten 6 ) , beschreiben wir in der vorliegenden Mitteilung Naphthochinon-Pigmente aus Myxomyceten '). A. Farbstoffe aus Trichia florifonnisTrichia floriformis (Schw.) G. Lister bildet rotbraune bis schwarze baumchenformige Fruchtkorper von 2-3 mm Hohe, die auf einem dunkelroten Hypothallus sitzen. Das Sporenpulver einschliel3lich des Capillitiums ist rotbraun.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.