BackgroundMyocardial infarction (MI) is a major risk factor responsible for morbidity and mortality. Xinji′erkang (XJEK) has been clinically used as an effective medication in the treatment of coronary heart disease and myocarditis. The purpose of this study was to investigate the cardioprotective effect of Xinji′erkang on MI mice.MethodsForty male mice were randomly assigned into four groups as follows (n = 10): sham, model, MI with administration of XJEK and fosinopril for four weeks. At the end of studies, hemodynamic parameters and electrocardiography (ECG) were recorded. Heart and body mass were measured and heart weight/body weight (HW/BW) ratio was calculated as index of hypertrophy. The hypertrophy of heart and aorta was examined using the hematoxylin and eosin (HE) staining, and the collagen deposition was evaluated using Van Gieson (VG) staining. Serum nitric oxide level (NO), superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentration were assayed by colorimetric analysis. The expressions of endothelial NO synthetase (eNOS) expression in serum and cardiac tissues were determined using ELISA assay and immunohistochemistry. Angiotensin II (Ang II) in serum and cardiac tissues was measured using ELISA assay. Besides, tumor necrosis factor-α (TNF-α), interleukin1β (IL-1β) and interleukin10 (IL-10) were observed in cardiac tissues with ELISA assay as well.ResultsThe administration of XJEK significantly improved cardiac dysfunction and abnormal ECG with reduced HW/BW ratio and ameliorated cardiomyocyte hypertrophy and collagen deposition compared to MI, which was partly due to the decreased SOD and increased MDA in serum. Moreover, XJEK treatment also improved endothelial dysfunction (ED) with not only enhanced eNOS activities in serum and cardiac tissues and elevated NO levels in serum, but also decreased Ang II content in serum and cardiac tissues. Finally, protein expressions of pro-inflammation cytokines, TNF-α and IL-1β in the cardiac tissues with XJEK treatment were significantly decreased compared to model. On the contrary, IL-10, an anti-inflammatory cytokine concentrated in cardiac tissues was significantly enhanced compared to model.ConclusionXinji′erkang exerts cardioprotective effect on myocardial infarction in mice, which may be due to the improvement of endothelial dysfunction and the reduction of oxidative stress and inflammation response.Electronic supplementary materialThe online version of this article (doi:10.1186/s12906-017-1846-5) contains supplementary material, which is available to authorized users.
To investigate the effects of P. ginseng C.A. Mey (P. ginseng) on the metabolism of diester alkaloids and explore the potential mechanism. P. ginseng was administered orally to rats for 7 days, after which liver microsome samples were prepared and then incubated with diester alkaloids. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to determinate the concentration of diester alkaloids to calculate the clearance rate. The cocktail method was used to evaluate the effects of oral administration of P. ginseng extracts on the activities of cytochrome P450 (CYP) isoforms in rats through the changes in the pharmacokinetic parameters of the probe drugs. The protein and gene expression of CYP3A2 and pregnane X receptor (PXR) in rats were evaluated by western blotting and quantitative PCR. The specific enzyme inhibitor method and human recombinant enzyme method were used to identify the involvement of sub-CYPs in the metabolism of diester alkaloids in human liver microsomes (HLMs). The clearances of aconitine, mesaconitine, and hypaconitine in the P. ginseng groups were lower than those of the control group. The areas under the curve of midazolam were 2.37 ± 1.05, 4.96 ± 0.51, and 6.23 ± 1.30 mg·L−1·h for the low-, medium-, and high-dose P. ginseng groups, respectively, which were higher than that of the control (2.23 ± 0.64 mg·L−1·h). The clearances of midazolam for the medium- (1.87 ± 0.16 L·h−1·kg−1) and high-dose (1.60 ± 0.34 L·h−1·kg−1) P. ginseng groups were lower than that of the control group (4.66 ± 1.43 L·h−1·kg−1). After exposure to P. ginseng extracts, the gene and protein expression levels of CYP3A4 and PXR were decreased. The hepatic metabolism rates of aconitine, mesaconitine, and hypaconitine in HLMs were decreased to 60.37%, 21.67%, and 10.11%, respectively, when incubated with ketoconazole, a specific inhibitor for CYP3A. The kinetic plots indicated that the KM and Vmax values of CYP3A4 were 10.08 ± 3.26 μM and 0.12 ± 0.01nmol·mg protein−1·min−1 for aconitine, 131.3 ± 99.75 μM and 0.73 ± 0.44 nmol·mg protein−1·min−1 for mesaconitine, and 17.05 ± 9.70 μM and 0.16 ± 0.04 nmol·mg protein−1·min−1 for hypaconitine, respectively. The in vitro mean intrinsic clearance rates by CYP3A4 were 0.0119, 0.0056, and 0.0091 mL·nmol CYP−1·min−1 for aconitine, mesaconitine, and hypaconitine, respectively. Therefore we implied that P. ginseng inhibited the metabolism of diester alkaloids in vitro and decreased the CYP3A4 enzyme activity as well as the gene and protein expression of CYP3A4 and PXR in vivo. CYP3A4 had a larger effect on diester alkaloid metabolism than the other human CYP isoforms, CYP1A2, CYP2C9, and CYP2E1.
To investigate the toxicity of water and ethanol “Fuzi” (FZ) extracts and to explore the toxicity mechanism in rats. Water and ethanol extracts were prepared. Three groups of rats received the water extract, ethanol extract, or water by oral gavage for seven days. Pathological section staining of heart tissue. Colorimetric analysis was used to determine serum lactate dehydrogenase. The metabolic expression of small molecules in rats was measured by a metabolomics method. Western blotting was used to detect the expression of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), transforming growth factor-β1 (TGF-β1), and caspase-3. Immunohistochemistry was used to detect the expression of CTnI, mTOR, and TGF-β1. The water and ethanol FZ extracts exert cardiotoxic effects via activating the PI3K/Akt/mTOR signaling pathway to induce cardiomyocyte apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.