A kind of absorbable PLGA microbubble-based contrast agent (PLGA microspheres with porous or hollow inner structure) was fabricated by an improved double emulsion-solvent evaporation method. The contrast efficiency was evaluated and proved both in vitro and in vivo. By adjusting the polymer concentration and volume of the inner aqueous phase during the fabrication of microbubbles, the inner structure of the microbubbles could be controlled. Both air-filled and perfluoropropane-filled microbubbles can opacify the left ventricle. However, when compared with air-filled microbubbles, perfluoropropane-filled microbubbles can produce significantly longer enhancement in left ventricle in the dog model due to the lower diffusivity and lower solubility of perfluoropropane in blood. A suspension of perfluoropropane-filled PLGA microbubbles (1.8 microm average microbubbles size, 2 x 10(8) microbubbles/mL concentration) has successfully and safely achieved myocardial opacification in closed-chest dogs. A perfusion defect was observed in both of the two dogs with acute myocardial infarction with Power Contrast Imaging (PCI) triggered technology. In the examination of contrast in both ventricular and myocardial opacification, the high mechanical index (MI) was found to have superior contrast sensitivity over the low MI for PLGA-based contrast agents.
Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is produced predominantly in the stomach. It has been reported that endogenous ghrelin levels are increased by fasting and decreased immediately after feeding and that fasting-induced ghrelin release is controlled by the sympathetic nervous system. However, the mechanisms of plasma ghrelin decrement after feeding are poorly understood. Here, we studied the control of ghrelin secretion using ghrelin-producing cell lines and found that these cells express high levels of mRNA encoding G-protein coupled receptor 120 (GPR120). Addition of GW-9508 (a GPR120 chemical agonist) and ␣-linolenic acid (a natural ligand for GPR120) inhibited the secretion of ghrelin by ϳ50 and 70%, respectively. However, the expression levels of preproghrelin and ghrelin O-acyltransferase (GOAT) mRNAs were not influenced by GW-9508. In contrast, the expression levels of prohormone convertase 1 were decreased significantly by GW-9508 incubation. Moreover, we observed that the inhibitory effect of GW-9508 on ghrelin secretion was blocked by a small interfering RNA (siRNA) targeting the sequence of GPR120. Furthermore, pretreatment with GW-9508 blocked the effect of the norepinephrine (NE)-induced ghrelin elevation in ghrelin cell lines. In addition, we showed that GW-9508 inhibited ghrelin secretion via extracellular signal-regulated kinase activity in ghrelin cell lines. Finally, we found that GW-9508 decreased plasma ghrelin levels in mice. These results suggest that the decrease of ghrelin secretion after feeding is induced partially by long-chain fatty acids that act directly on gastric GPR120-expressing ghrelin cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.