An intelligent reflecting surface (IRS) can adaptively adjust the phase shifts of its reflecting units to strengthen the desired signal and/or suppress the undesired signal. In this letter, we investigate an IRS-aided secure wireless communication system where a multi-antenna access point (AP) sends confidential messages to a single-antenna user in the presence of a single-antenna eavesdropper. In particular, we consider the challenging scenario where the eavesdropping channel is stronger than the legitimate communication channel and they are also highly correlated in space. We maximize the secrecy rate of the legitimate communication link by jointly designing the AP's transmit beamforming and the IRS's reflect beamforming. While the resultant optimization problem is difficult to solve, we propose an efficient algorithm to obtain high-quality suboptimal solution for it by applying the alternating optimization and semidefinite relaxation methods. Simulation results show that the proposed design significantly improves the secrecy communication rate for the considered setup over the case without using the IRS, and outperforms a heuristic scheme.Index Terms-Intelligent reflecting surface, phase shift optimization, passive beamforming, physical-layer security.
Unmanned aerial vehicle (UAV) communication is anticipated to be widely applied in the forthcoming fifthgeneration (5G) wireless networks, due to its many advantages such as low cost, high mobility, and on-demand deployment. However, the broadcast and line-of-sight (LoS) nature of airto-ground wireless channels gives rise to a new challenge on how to realize secure UAV communications with the destined nodes on the ground. This paper aims to tackle this challenge by applying the physical layer security technique. We consider both the downlink and uplink UAV communications with a ground node, namely UAV-to-ground (U2G) and ground-to-UAV (G2U) communications, respectively, subject to a potential eavesdropper on the ground. In contrast to the existing literature on wireless physical layer security only with ground nodes at fixed or quasistatic locations, we exploit the high mobility of the UAV to proactively establish favorable and degraded channels for the legitimate and eavesdropping links, respectively, via its trajectory design. We formulate new problems to maximize the average secrecy rates of the U2G and G2U transmissions, respectively, by jointly optimizing the UAV's trajectory and the transmit power of the legitimate transmitter over a given flight period of the UAV. Although the formulated problems are non-convex, we propose iterative algorithms to solve them efficiently by applying the block coordinate descent and successive convex optimization methods. Specifically, the transmit power and UAV trajectory are each optimized with the other being fixed in an alternating manner, until the algorithms converge. Simulation results show that the proposed algorithms can improve the secrecy rates for both U2G and G2U communications, as compared to other benchmark schemes without power control and/or trajectory optimization.Index Terms-5G and UAV communications, physical layer security, secrecy rate maximization, trajectory design, power control.
Unmanned aerial vehicles (UAVs) are anticipated to be widely deployed in future wireless communications, due to their advantages of high mobility and easy deployment. However, the broadcast nature of air-to-ground line-of-sight wireless channels brings a new challenge to the information security of UAVground communication. This paper tackles such a challenge in the physical layer by exploiting the mobility of UAV via its trajectory design. We consider a UAV-ground communication system with multiple potential eavesdroppers on the ground, where the information on the locations of the eavesdroppers is imperfect. We formulate an optimization problem which maximizes the average worst-case secrecy rate of the system by jointly designing the robust trajectory and transmit power of the UAV over a given flight duration. The non-convexity of the optimization problem and the imperfect location information of the eavesdroppers make the problem difficult to be solved optimally. We propose an iterative suboptimal algorithm to solve this problem efficiently by applying the block coordinate descent method, S-procedure, and successive convex optimization method. Simulation results show that the proposed algorithm can improve the average worst-case secrecy rate significantly, as compared to two other benchmark algorithms without robust design.
Unmanned aerial vehicle (UAV) communications has drawn significant interest recently due to many advantages such as low cost, high mobility, and on-demand deployment. This paper addresses the issue of physical-layer security in a UAV communication system, where a UAV sends confidential information to a legitimate receiver in the presence of a potential eavesdropper which are both on the ground. We aim to maximize the secrecy rate of the system by jointly optimizing the UAV's trajectory and transmit power over a finite horizon. In contrast to the existing literature on wireless security with static nodes, we exploit the mobility of the UAV in this paper to enhance the secrecy rate via a new trajectory design. Although the formulated problem is non-convex and challenging to solve, we propose an iterative algorithm to solve the problem efficiently, based on the block coordinate descent and successive convex optimization methods. Specifically, the UAV's transmit power and trajectory are each optimized with the other fixed in an alternating manner until convergence. Numerical results show that the proposed algorithm significantly improves the secrecy rate of the UAV communication system, as compared to benchmark schemes without transmit power control or trajectory optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.