Background: Chemo-resistance is one of the main obstacles in the treatment of prostate cancer (PCa). Long noncoding RNA small nucleolar RNA host gene 6 (SNHG6) is involved in the chemo-resistance of various tumors. We aim to survey the role and underlying molecular mechanism of SNHG6 in PCa resistance to paclitaxel (PTX). Methods: The expression of SNHG6 and miR-186 was detected using quantitative real time polymerase chain reaction (qRT-PCR). The proliferation, migration, invasion, and apoptosis of PTX-resistant PCa cells were determined via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), transwell assay, or flow cytometry assay. Protein levels of CyclinD1, matrix metalloproteinase 9 (MMP9), Vimentin, E-cadherin, Cleaved-caspase-3 (Cleaved-casp-3) Cleaved-caspase-9 (Cleaved-casp-9), Multidrug Resistance associated Protein 1 (MRP1), and multidrug resistance-1 (MDR1) were assessed by western blot analysis. The relationship between SNHG6 and miR-186 were confirmed by dual-luciferase reporter assay. The role of SNHG6 in vivo was confirmed by xenograft tumor model. Results: SNHG6 expression was increased and miR-186 expression was reduced in drug-resistant PCa tissues and cells. SNHG6 knockdown elevated PTX-resistant PCa cells sensitivity to PTX in vitro and in vivo, and repressed proliferation, migration, and invasion of PTX-resistant PCa cells in vitro. Importantly, SNHG6 acted as a sponge of miR-186. Furthermore, miR-186 downregulation reversed SNHG6 silencing-mediated cell sensitivity to PTX, proliferation, migration, and invasion in PTX-resistant PCa cells. Conclusions: SNHG6 knockdown elevated the sensitivity of PTX-resistant PCa cells to PTX by sponging miR-186, indicating that SNHG6 might be a therapeutic target for PCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.