Polydatin(PD) shows anti-allergic inflammatory effect, and this study investigated its underlying mechanisms in in vitro and in vivo models. IgE-mediated passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA) models were used to confirm PD effect in vivo. Various signaling pathway proteins in mast cell were examined. RT-PCR, ELISA and western blotting were applied when appropriate. Activity of Lyn and Fyn kinases in vitro was measured using the Kinase Enzyme System. PD dose-dependently reduced the pigmentation of Evans blue in the PCA model and decreased the concentration of serum histamine in PSA model, and attenuated the degranulation of mast cells without generating cytotoxicity. PD decreased pro-inflammatory cytokine expression (TNF-α, IL-4, IL-1β, and IL-8). PD directly inhibited activity of Lyn and Syk kinases and down-regulated downstream signaling pathway including MAPK, PI3K/AKT and NF-kB. In addition, PD also targets Nrf2/HO-1 pathway to inhibit mast cell-derived allergic inflammatory reactions. In conclusion, the study demonstrates that PD is a possible therapeutic candidate for allergic inflammatory diseases. It directly inhibited activity of Lyn and Syk kinases and down-regulates the signaling pathway of MAPK, PI3K/AKT and NF-κB, and up-regulates the signaling pathway of Nrf2/HO-1 to inhibit the degranulation of mast cells.
BackgroundHigh-level expression of NAD(P)H: quinoneoxidoreductase 1 (NQO1) has been correlated with many types of human cancers, suggesting that NQO1 plays important roles in tumor occurrence and progression. This study attempted to explore the role of NQO1 in tumor progression and prognostic evaluation of non-small cell lung cancer (NSCLC).MethodsTotal 164 tissue samples, including 150 NSCLC paired with the adjacent non-tumor tissues and 14 normal lung tissues, were picked-up for immunohistochemical (IHC) staining of the NQO1 protein, and immunofluorescence (IF) staining was also performed to detect the subcellular localization of the NQO1 protein in A549 human lung cancer cells. The correlation between NQO1 expression and clinicopathological characteristics were evaluated by Chi-square test and Fisher’s exact tests. The disease-free survival (DFS) and overall survival (OS) rates of NSCLC patients were calculated by the Kaplan-Meier method, and univariate and multivariate analyses were performed using the Cox proportional hazards regression model.ResultsThe NQO1 protein showed a mainly cytoplasmic staining pattern in lung cancer cells, including adenocarcinoma and squamous cell carcinoma (SCC). Both positive rate and strongly positive rate of NQO1 protein expression were significantly higher in NSCLC (59.3% and 28.0%) than that in adjacent non tumor (8.0% and 1.3%) and normal lung tissues (0%). The positive rate of NQO1 was related with clinical stage and lymph node metastasis, and the strongly positive rate of NQO1 protein was significantly correlated with tumor size, poor differentiation, advanced clinical stage and lymph node metastasis in NSCLC. Additionally, survival analyses showed that the patients with NQO1 positive expression had lower OS rates compared with those with NQO1 negative expression in the groups of T1-2, T3-4, without LN metastasis and stage I-II of NSCLC, respectively; however, in the groups of patients with LN metastasis or III-IV stages, OS rate was not correlated with NQO1 expression status. Moreover, multivariate analysis suggested that NQO1 emerged as a significant independent prognostic factor along with tumor size, differentiation, lymph node metastasis and clinical stage in patients with NSCLC.ConclusionsNQO1 is upregulated in NSCLC, and it may be a useful poor prognostic biomarker and a potential therapeutic target for patients with NSCLC.
BackgroundNQO1 (NAD(P)H: quinone oxidoreductase-1), located on chromosome 16q22, functions primarily to protect normal cells from oxidant stress and electrophilic attack. Recent studies have revealed that NQO1 is expressed at a high level in most human solid tumors including those of the colon, breast, pancreas, ovaries and thyroid, and it has also been detected following the induction of cell cycle progression and proliferation of melanoma cells. In this study, we aimed to investigate the clinicopathological significance of upregulated NQO1 protein expression in squamous cell carcinomas (SCCs) of the uterine cervix.MethodsThe localization of the NQO1 protein was determined in the SiHa cervical squamous cancer cell line using immunofluorescence (IF) staining, and immunohistochemical (IHC) staining performed on paraffin-embedded cervical SCC specimens from 177 patients. For comparison, 94 cervical intraepithelial neoplasia (CIN) and 25 normal cervical epithelia samples were also included. QRT-PCR was performed on RNA from fresh tissues to detect NQO1 mRNA expression levels, and HPV infection status was genotyped using oligonucleotide microarray. Disease-free survival (DFS) and 5-year overall survival (OS) rates for all cervical SCC patients were calculated using the Kaplan–Meier method, and univariate and multivariate analysis was performed using the Cox proportional hazards regression model.ResultsThe NQO1 protein showed a mainly cytoplasmic staining pattern in cervical cancer cells, and only three cases of cervical SCC showed a nuclear staining pattern. The strongly positive rate of NQO1 protein expression was significantly higher in cervical SCCs and CINs than in normal cervical epithelia. High-level NQO1 expression was closely associated with poor differentiation, late-stage, lymph node metastasis and high-risk for HPV infection. Additionally, high-level NQO1 expression was associated with lower DFS and 5-year OS rates, particularly for patients with early-stage cervical SCCs. Furthermore, Cox analysis revealed that NQO1 expression emerged as a significant independent hazard factor for DFS rate in patients with cervical SCC.ConclusionsNQO1 overexpression might be an independent biomarker for prognostic evaluation of cervical SCCs.
BackgroundNAD(P)H:quinone oxidoreductase (NQO1) is a flavoprotein that catalyzes two-electron reduction and detoxification of quinones and its derivatives. NQO1 catalyzes reactions that have a protective effect against redox cycling, oxidative stress and neoplasia. High expression of NQO1 is associated with many solid tumors including those affecting the colon, breast and pancreas; however, its role in the progression of ovarian carcinoma is largely undefined. This study aimed to investigate the clinicopathological significance of high NQO1 expression in serous ovarian carcinoma.MethodsNQO1 protein expression was assessed using immunohistochemical (IHC) staining in 160 patients with serous ovarian carcinoma, 62 patients with ovarian borderline tumors and 53 patients with benign ovarian tumors. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect NQO1 mRNA expression levels. The correlation between high NQO1 expression and clinicopathological features of ovarian carcinoma was evaluated by Chi-square and Fisher’s exact test. Overall survival (OS) rates of all of ovarian carcinoma patients were calculated using the Kaplan-Meier method, and univariate and multivariate analyses were performed using the Cox proportional hazards regression model.ResultsNQO1 protein expression in ovarian carcinoma cells was predominantly cytoplasmic. Strong, positive expression of NQO1 protein was observed in 63.8% (102/160) of ovarian carcinomas, which was significantly higher than in borderline serous tumors (32.3%, 20/62) or benign serous tumors (11.3%, 6/53). Importantly, the rate of strong, positive NQO1 expression in borderline serous tumors was also higher than in benign serous tumors. High expression of NQO1 protein was closely associated with higher histological grade, advanced clinical stage and lower OS rates in ovarian carcinomas. Moreover, multivariate analysis indicated that NQO1 was a significant independent prognostic factor, in addition to clinical stage, in patients with ovarian carcinoma.ConclusionsNQO1 is frequently upregulated in ovarian carcinoma. High expressin of NQO1 protein may be an effective biomarker for poor prognostic evaluation of patients with serous ovarian carcinomas.
Mast cells participate in allergies and inflammation by secreting a variety of pro-inflammatory mediators. Curcumin, the active component of turmeric, is a polyphenolic phytochemical with anti-tumor, anti-inflammatory, anti-oxidative, and anti-allergic properties. The effects of curcumin on compound 48/80-induced mast cell activation and passive cutaneous anaphylactoid reactions are unknown. In this report, we investigated the influences of curcumin on the passive cutaneous anaphylactoid response in vivo and compound 48/80-induced mast cell activation in vitro. The mechanism of action was examined by calcium uptake measurements and cAMP assays in mast cells. Curcumin significantly attenuated the mast cell-mediated passive cutaneous anaphylactoid reaction in an animal model. In agreement with this in vivo activity, curcumin suppressed compound 48/80-induced rat peritoneal mast cell (RPMC) degranulation and histamine release from RPMCs. Moreover, compound 48/80-elicited calcium uptake into RPMCs was reduced in a dose-dependent manner by curcumin. Furthermore, curcumin increased the level of intracellular cAMP and significantly inhibited the compound 48/80-induced reduction of cAMP in RPMCs. These results corroborate the finding that curcumin may have anti-allergic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.