A novel small molecule acceptor MeIC with a methylated end-capping group is developed. Compared to unmethylated counterparts (ITCPTC), MeIC exhibits a higher lowest unoccupied molecular orbital (LUMO) level value, tighter molecular packing, better crystallites quality, and stronger absorption in the range of 520-740 nm. The MeIC-based polymer solar cells (PSCs) with J71 as donor, achieve high power conversion efficiency (PCE), up to 12.54% with a short-circuit current (J ) of 18.41 mA cm , significantly higher than that of the device based on J71:ITCPTC (11.63% with a J of 17.52 mA cm ). The higher J of the PSC based on J71:MeIC can be attributed to more balanced μ /μ , higher charge dissociation and charge collection efficiency, better molecular packing, and more proper phase separation features as indicated by grazing incident X-ray diffraction and resonant soft X-ray scattering results. It is worth mentioning that the as-cast PSCs based on MeIC also yield a high PCE of 11.26%, which is among the highest value for the as-cast nonfullerene PSCs so far. Such a small modification that leads to so significant an improvement of the photovoltaic performance is a quite exciting finding, shining a light on the molecular design of the nonfullerene acceptors.
As a next generation of detection technology, terahertz technology is very promising. In this work, a highly efficient terahertz wave absorber based on 3D graphene foam (3DG) is first reported. Excellent terahertz absorption property at frequency ranging from 0.1 to 1.2 THz is obtained owing to faint surface reflection and enormous internal absorption. By precise control of the constant properties for 3DG, the reflection loss (RL) value of 19 dB is acquired and the qualified frequency bandwidth (with RL value over 10 dB) covers 95% of the entire measured bandwidth at normal incidence, which far surpasses most reported materials. More importantly, the terahertz absorption performance of 3DG enhances obviously with increasing the incidence while majority of materials become invalid at oblique incidence, instead. At the incidence of 45°, the maximum RL value increases 50% from 19 to 28.6 dB and the qualified frequency bandwidth covers 100% of the measured bandwidth. After considering all core indicators involving density, qualified bandwidth, and RL values, the specific average terahertz absorption (SATA) property is investigated. The SATA value of 3DG is over 3000 times higher than those of other materials in open literatures.
Understanding the conformation effect on molecular packing, miscibility, and photovoltaic performance is important to open a new avenue for small‐molecule acceptor (SMA) design. Herein, two novel acceptor–(donor‐acceptor1‐donor)–acceptor (A‐DA1D‐A)‐type asymmetric SMAs are developed, namely C‐shaped BDTP‐4F and S‐shaped BTDTP‐4F. The BDTP‐4F‐based polymer solar cells (PSCs) with PM6 as donor, yields a power conversion efficiency (PCE) of 15.24%, significantly higher than that of the BTDTP‐4F‐based device (13.12%). The better PCE for BDTP‐4F‐based device is mainly attributed to more balanced charge transport, weaker bimolecular recombination, and more favorable morphology. Additionally, two traditional A‐D‐A‐type SMAs (IDTP‐4F and IDTTP‐4F) are also synthesized to investigate the conformation effect on morphology and device performance. Different from the device result above, here, IDTP‐4F with S‐shape conformation outperforms than IDTTP‐4F with C‐shape conformation. Importantly, it is found that for these two different types of SMA, the better performing binary blend has similar morphological characteristics. Specifically, both PM6:BDTP‐4F and PM6:IDTP‐4F blend exhibit perfect nanofibril network structure with proper domain size, obvious face‐on orientation and enhance donor‐acceptor interactions, thereby better device performance. This work indicates tuning molecular conformation plays pivotal role in morphology and device effciciency, shining a light on the molecular design of the SMAs.
Although yield output of maize ( Zea mays L.) has improved markedly over the last century, procedures for improving the grain-filling process remain elusive. Our aim in this study was to relate grain-filling variation in maize (including kernels in apical and middle positions in the ears) to plant density and nitrogen (N) application rate using a crossed experimental design. We also investigated changes in zeatin riboside (ZR), indole-3-acetic acid (IAA), abscisic acid (ABA), and gibberellic acid (GA) in the kernels during the grain-filling period. Two high-yield maize varieties cultivated extensively in China were field grown under normal (67,500 pl ha -1 ) and high (97,500 pl ha -1 ) densities, and supplied with low, normal and high (0, 180, and 360 kg N ha -1 ) concentrations of N. Kernel weight (KW), the maximum grain-filling rate (G max ), the average grain-filling rate (G ave ), and the kernel weight increment achieving G max (W max ) were all significantly depressed under high density (HD) conditions, but increased N supply partially offset the losses. The apical kernels were more sensitive to density and N application rate than middle kernels. Correlation analysis indicated that plant density and N rate affected KW mainly by influencing the grain-filling rate. Variation in ZR, IAA, and ABA content tracked the variation in KW, but variation in GA content did not. Furthermore, the grain-filling parameters (closely related to TKW) had strong canonical correlation with the content of all hormones across the filling period and ZR content had the strongest relationship. Based on our study, high N supply is beneficial to optimize grain-filling parameters and improve KW of maize kernels under crowded condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.