In order to satisfy the power thirsty of communication devices in the imminent 5G era, wireless charging techniques have attracted much attention both from the academic and industrial communities. Although the inductive coupling and magnetic resonance based charging techniques are indeed capable of supplying energy in a wireless manner, they tend to restrict the freedom of movement. By contrast, RF signals are capable of supplying energy over distances, which are gradually inclining closer to our ultimate goal -charging anytime and anywhere. Furthermore, transmitters capable of emitting RF signals have been widely deployed, such as TV towers, cellular base stations and Wi-Fi access points. This communication infrastructure may indeed be employed also for wireless energy transfer (WET). Therefore, no extra investment in dedicated WET infrastructure is required. However, allowing RF signal based WET may impair the wireless information transfer (WIT) operating in the same spectrum. Hence, it is crucial to coordinate and balance WET and WIT for simultaneous wireless information and power transfer (SWIPT), which evolves to Integrated Data and Energy communication Networks (IDENs). To this end, a ubiquitous IDEN architecture is introduced by summarising its natural heterogeneity and by synthesising a diverse range of integrated WET and WIT scenarios. Then the inherent relationship between WET and WIT is revealed from an information theoretical perspective, which is followed by the critical appraisal of the hardware enabling techniques extracting energy from RF signals. Furthermore, the transceiver design, resource allocation and user scheduling as well as networking aspects are elaborated on. In a nutshell, this treatise can be used as a handbook for researchers and engineers, who are interested in enriching their knowledge base of IDENs and in putting this vision into practice.Index Terms-RF signals, wireless energy transfer (WET), wireless information transfer (WIT), simultaneous wireless information and power transfer (SWIPT), wireless powered communication networks (WPCNs), integrated data and energy communication networks (IDENs).an increasing research interest from both the electronic and communication engineering communities. C. Near-field Wireless Energy TransferAt the time of writing, resonant inductive coupling [35] and magnetic resonance coupling [36] emerge as flexible wireless charging options for electronic devices in the nearfield. Resonant inductive coupling based wireless charging relies on the magnetic coupling that delivers electrical energy between two coils tuned to resonate at the same frequency. This technique has already been commercialised for small electronic appliances [37], such as mobile phones, electric toothbrushes and smart watches etc. However, the coupling coils only support near-field wireless power transfer over a distance spanning from a few millimetres to a few centimetres [38], while achieving a power transfer efficiency as high as 56.7%, when operating at a frequency of 508 kHz [...
Metamaterial absorber (MMA), which is a kind of thin electromagnetic absorber consisting of sub-wavelength metamaterial resonators and can exhibit near-perfect absorption characteristics, has been widely investigated in recently years. The impedance matching theory was proposed to analyze the configuration of MMA in most literatures. Such theory, however, may not suitable to analyze the interactions of metamaterial resonators and the ground plane. The interference theory, on another hand, can play effective approach for this kind of problem presented in recent studies, whereas little attention has been paid on the oblique incidence conditions. In this paper, we firstly extend the interference theory model to make it applicable for oblique incident waves and analyze MMA using the extended interference theory model. Secondly, we further explore the sufficient condition for the maximum absorptivity at both normal and oblique incidence cases. Thirdly, with the sufficient condition, we can obtain the absorbing frequency directly if the thickness of MMA is given. These theoretical results have significant effects on the design and analyze of MMA. And lastly, we point out that absorptivity is not absolutely insensitive to the incidence angle in TM mode as what previous study claims, but insensitive when the dielectric slab is high loss, which can also be explained by interference theory
A novel low-energy hybrid capacitor switching scheme for a lowpower successive approximation register (SAR) analogue-to-digital converter (ADC) is presented. The proposed switching scheme combines a new switch method and the monotonic technique. The new switch method can achieve no switching energy consumption in the first three comparison cycles. Furthermore, a low-energy monotonic procedure is performed for the rest of the comparisons. The average switching energy is reduced by 98.83% compared with the conventional architecture, resulting in the most energy-efficient switching scheme among the existing switching techniques. Besides the significant energy saving, the proposed switching scheme also achieves a 75% reduction of the capacitors over the conventional scheme.
Metamaterials attain their behavior due to resonant interactions among their subwavelength components and thus show specific designer features only in a very narrow frequency band. There is no simple way to dynamically increase the operating bandwidth of a narrowband metamaterial, but it may be possible to change its central frequency, shifting the spectral response to a new frequency range. In this paper, we propose and experimentally demonstrate a metamaterial absorber that can shift its central operating frequency by using mechanical means. The shift is achieved by varying the gap between the metamaterial and an auxiliary dielectric slab parallel to its surface. We also show that it is possible to create multiple absorption peaks by adjusting the size and/or shape of the dielectric slab, and to shift them by moving the slab relative to the metamaterial. Specifically, using numerical simulations we design a microwave metamaterial absorber and experimentally demonstrate that its central frequency can be set anywhere in a 1.6 GHz frequency range. The proposed configuration is simple and easy to make, and may be readily extended to THz frequencies.
In this letter, based on a corner-cut square metasurface, a planar polarization conversion structure is presented and the application for wide band low-profile circular polarization (CP) slot antenna is proposed. The mechanisms for achieving the CP state from a linearly polarized incident wave and for broadening the working bandwidth of conventional slot antenna are analyzed theoretically. The wide band low-profile CP slot antenna is achieved with numerical optimizations and parameter studies. Both simulations and measurements are performed to demonstrate the proposed antenna, and good agreements are obtained. Such results will open the path for polarization conversion metasurfaces used in the CP antenna area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.