Background:The chemerin-CMKLR1 axis modulates inflammation; ligands for CMKLR1 have short half-lives. Results: We have utilized a novel technology to develop a long-acting, high potency membrane-anchored CMKLR1 agonist. Conclusion: This ligand decreases allergic airway inflammation and neuropathic pain in mice. Significance: Our approach can be applied to develop other candidate therapeutics targeting peptide hormone receptors implicated as modulators of disease.
Cathepsin S (CTSS) is a cysteine protease that is constitutively expressed in APCs and mediates processing of MHC class II-associated invariant chain. CTSS and the Ets family transcription factor PU.1 are highly expressed in cells of both myeloid (macrophages and dendritic cells) and lymphoid (B lymphocytes) lineages. Therefore, we hypothesized that PU.1 participates in the transcriptional regulation of CTSS in these cells. In A549 cells (a human epithelial cell line that does not express either CTSS or PU.1), the expression of PU.1 enhances CTSS promoter activity ∼5- to 10-fold. In RAW cells (a murine macrophage-like cell line that constitutively expresses both CTSS and PU.1), the expression of a dominant-negative PU.1 protein and a short-interfering RNA PU.1 construct attenuates basal CTSS promoter activity, mRNA levels, and protein expression. EMSAs show binding of PU.1 to oligonucleotides derived from the CTSS promoter at two different Ets consensus binding elements. Mutation of these sites decreases the baseline CTSS activity in RAW cells that constitutively express PU.1. Chromatin immunoprecipitation experiments show binding of PU.1 with the CTSS promoter in this same region. Finally, the expression of PU.1, in concert with several members of the IFN regulatory factor family, enhances CTSS promoter activity beyond that achieved by PU.1 alone. These data indicate that PU.1 participates in the regulation of CTSS transcription in APCs. Thus, manipulation of PU.1 expression may directly alter the endosomal proteolytic environment in these cells.
Background Although obesity may affect reproductive functions, the molecular mechanisms of apoptosis-related biomarkers remain uncertain. Objective To examine the effects of body mass index on sperm quality and apoptosis-related factors in seminal plasma of men. Methods Data for 54 subfertile men were collected at our reproductive medical center. The men were divided into normal weight, overweight, and obese groups based on their body mass index (BMI). Sperm DNA fragmentation (sperm chromatin structure analysis), sperm apoptosis (annexin V), and sperm apoptosis-related factors (antibody array assay) were assessed and their relationships with BMI were analyzed. Results BMI was not significantly related to age, duration of infertility, duration of sexual abstinence, semen volume, sperm concentration, or rate of normal sperm morphology (p > 0.05). However, progressive sperm motility was significantly reduced and the rates of sperm DNA fragmentation index (DFI) and sperm apoptosis were significantly increased in overweight and obese men compared with men with normal BMI. Fas/Fasl, Bcl-2/Bax, caspase-3, caspase-8, p53, and p21 were all upregulated in the overweight and obese groups. Protein function annotation by Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that apoptosis-related factors were enriched in a network associated with activation of apoptotic signaling pathways, such as apoptosis and p53 signaling. Conclusion These data suggest that increased BMI is associated with increased sperm apoptosis and sperm DNA damage, as well as accelerated expression of apoptosis-related factors via the activation of apoptotic signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.