BackgroundHepatocellular carcinoma (HCC) is a commonly occurring liver malignancy. Its prognosis remains unsatisfactory. Accumulating evidence has revealed that exosomal microRNAs (miRNAs) act as biomarkers and play crucial roles in the advancement of HCC. The current study explored the biological role and fundamental mechanism of exosomal miR-744 in HCC.Material/MethodsThe serum exosomes of HCC patients were isolated by differential ultracentrifugation. MiR-744 expression in HCC tissues, cell lines and serum exosomes were detected by quantitative real-time polymerase chain reaction (qRT-PCR). EdU (5-ethynyl-2′-deoxyuridine) assay and Cell Counting Kit-8 (CCK-8) assay were conducted to show the impacts of miR-744 or exosomal miR-744 on proliferation and sorafenib resistance in HepG2 cells. The target of miR-744 was ascertained by regulating the level of miR-744 in HepG2 cells.ResultsMiR-744 is downregulated in HCC tissues and cell lines as well as in exosomes derived from patient serum and HepG2 cells. Additionally, downregulated miR-744 promotes HepG2 cell proliferation and inhibits the chemosensitivity of HepG2 cells to sorafenib. PAX2 was identified as the functional target of miR-744. Interestingly, miR-744 is decreased in exosomes derived from sorafenib-resistant HepG2 cells. Furthermore, when treated with the miR-744-enriched exosomes, the proliferation of HepG2 cells was significantly suppressed, and the sorafenib resistance was reduced.ConclusionsMiR-744 has an imperative role in the propagation and chemoresistance of HCC. Serum exosomal miR-744 might act as a biomarker of HCC, and exosomal miR-744 might offer an innovative strategy for HCC treatment.
a b s t r a c tSilent mating type information regulation 1 (SIRT1) is implicated in tumorigenesis through its effect on autophagy. In gastric cancer (GC), SIRT1 is a marker for prognosis and is involved in cell invasion, proliferation, epithelial-mesenchymal transition (EMT) and drug resistance. Autophagy can function as a cell-survival mechanism or lead to cell death during the genesis and treatment of GC. This functionality is determined by factors including the stage of the tumor, cellular context and stress levels. Interestingly, SIRT1 can regulate autophagy through the deacetylation of autophagy-related genes (ATGs) and mediators of autophagy. Taken together, these findings support the need for continued research efforts to understand the mechanisms mediating the development of gastric cancer and unveil new strategies to eradicate this disease.
A long non-coding RNA named HOTTIP (HOXA transcript at the distal tip) coordinates the activation of various 5' HOXA genes which encode master regulators of development through targeting the WDR5/MLL complex. HOTTIP acts as an oncogene in several types of cancers, whereas its biological function in gastric cancer has never been studied. In the present study, we investigated the role of HOTTIP in gastric cancer. We found that HOTTIP was upregulated in gastric cancer cell lines. Knockdown of HOTTIP in gastric cancer cells inhibited cell proliferation, migration and invasion. Moreover, downregulation of HOTTIP led to decreased expression of homeobox protein Hox-A13 (HOXA13) in gastric cancer cell lines. HOXA13 was involved in HOTTIP‑induced malignant phenotypes of gastric cancer cells. Our data showed that the levels of HOTTIP and HOXA13 were both markedly upregulated in gastric cancer tissues compared with their counterparts in non-tumorous tissues. Furthermore, the expression levels of HOTTIP and HOXA13 were both higher in gastric cancer which was poorly differentiated, at advanced TNM stages and exhibited lymph node-metastasis. Spearman analyses indicated that HOTTIP and HOXA13 had a highly positive correlation both in non-tumor mucosae and cancer lesions. Collectively, these findings suggest that HOTTIP and HOXA13 play important roles in gastric cancer progression and provide a new insight into therapeutic treatment for the disease.
Aim. Sirtuin 1 (SIRT1) can induce autophagy through deacetylation of Beclin-1 and other autophagy mediators. However, the relationship between SIRT1 and autophagy in GC has not been defined. Therefore, the aim of this study was to confirm the prognostic value of SIRT1 and Beclin-1 and their relationship in GC patients. Methods. Transmission electron microscopy (TEM) was performed to examine the autophagy in GC patients. Immunohistochemistry was used to examine the expression of SIRT1, Beclin-1 in GC, and adjacent nonneoplastic mucosa. Results. In 7 out of 8 GC patients' samples examined by TEM, more autophagic vesicles were observed in GC tissues compared to adjacent nonneoplastic mucosa tissue. A positive correlation between SIRT1 and Beclin-1 expression was observed. Furthermore, Beclin-1 or SIRT1 expression alone or their combined expression were significantly correlated with advanced clinicopathological parameters. High Beclin-1 and SIRT1 expression alone and their combined high expression predicted shorter overall survival and relapse-free survival. Both high Beclin-1 and SIRT1 expressions were independent prognostic factors for poor survival of GC. Conclusions. Based on our results we can conclude that SIRT1 and Beclin-1 expression alone or in combination can be used as prognostic indicator and may represent new therapeutic targets in GC.
Bioelectronics, which can provide electrical impulses to precisely modulate the body's neural circuits, spark great interests of industry and academia. Yet the technologies to power and manipulate these devices, such as wireless powering and remote manipulation, remain challenging. Here, by investigating the pyroelectric performances of poly(vinylidene difluoride) (PVDF) and its remote‐manipulation ability under near‐infrared‐ray (nIR) irradiation, a flexible battery‐less implantable device is proposed, constructed by laminated graphene–PVDF–graphene sandwiches, which can be wirelessly powered and supply regulatable electrical pulses for nerve stimulation by nIR irradiation. The flexible and compact device (20 mm × 20 mm in area, 0.2 mm in thickness) can generate electrical pulses with controllable amplitude and width, and shows an excellent ability to stimulate nerves, i.e., sciatic nerve of a frog and a rat heart, by remote control. The flexible and remote‐manipulative battery‐less device should find uses in the design and fabrication of bioelectronics‐related applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.