The objective of this experiment was to investigate the effect of lactic acid bacteria (LAB) and cellulase (CE) on the fermentation quality, rumen degradation rate and bacterial community of mixed silage of soybean residue (SR) and corn stover (CS). The experiment adopted a single-factor experimental design. Four treatment groups were set up: the control group (CON), lactic acid bacteria treatment group (LAB), cellulase treatment group (CE) and lactic acid bacteria + cellulase treatment group (LAB + CE). Among them, the amount of added LAB was 1 × 106 CFU/g, and the amount of added CE was 100 U/g. After 56 days of mixed silage, samples were taken and analyzed, and the chemical composition, fermentation quality, rumen degradation rate and microbial diversity were determined. The results showed that the pH of each treatment group was significantly (p < 0.05) lower than that of CON, while the lactic acid and ammoniacal nitrogen contents of each treatment group were significantly higher than that of CON, with the highest contents in the LAB + CE group. The contents of DNFom (Ash-free NDF), ADFom (Ash-free ADF) and DM in the LAB + CE group were significantly lower than those in the CON group, while the content of crude protein (CP) was significantly higher than that in the CON group. The in situ effective degradation rates of DM (ISDMD), DNF (ISNDFD) and CP (ISCPD) were all significantly (p < 0.05) higher in each treatment group than in the control group. The results of principal component analysis showed that the bacterial composition of the LAB, CE and LAB + CE groups was significantly different from that of the CON group (p < 0.05). Bacterial genus level analysis showed that the content of lactic acid bacteria was significantly higher in the LAB + CE group than in the other treatment groups (p < 0.05), while the content of undesirable bacteria was significantly lower than in the other treatment groups. The results showed that the addition of Lactobacillus and/or cellulase in mixed silage of SR and CS could effectively improve the quality of mixed silage fermentation, rumen degradation rate and microbial diversity, with better results when Lactobacillus and cellulase were added together, which provides new ideas for better application of SR and CS in dairy production.
Bovine mammary epithelial cells (BMECs) of high‐producing dairy cows are subject to constant oxidative stress as a result of high metabolic rate and physiological adaptation to intensive farming. Moringa (Moringa oleifera) leaf has been proposed to have the antioxidant potential in scavenging free radicals due to the presence of flavonoids. In this study, we investigated the cytoprotective effects of moringa leaf flavonoids in alleviating oxidative stress in BMECs in vitro. Oxidative stress was established by exposing isolated BMECs to H2O2 for 2 hr. Doses of moringa leaf flavonoids were evaluated by treating BMECs for 12 hr. The optimal concentrations of H2O2 and moringa leaf flavonoids were 500 μmol/L and 1.0 mg/ml, respectively. The results showed that moringa leaf flavonoids increased the activities of superoxide dismutase, catalase, and glutathione peroxidase; and reduced malondialdehyde activity and intracellular accumulation of reactive oxygen species (ROS) in the H2O2‐induced oxidative stress system. A Hoechst33258 staining assay revealed that moringa leaf flavonoids decreased the apoptosis rate in BMECs, while leaving membrane integrity and nucleolar morphology unchanged. We concluded that moringa leaf flavonoids have the antioxidant capacity to effectively reduce oxidative stress in BMECs.
The purpose of this research was to investigate the effects of replacing soybean meal (SBM) with a fermented corn gluten-wheat bran mixture (FCWM) on nutrient digestibility, lactation performance, plasma metabolites, ruminal fermentation, and bacterial communities in Holstein cows. Nine healthy multiparous (parity = 3) Holstein cows with similar body weights (624 ± 14.4 kg), days in milk (112 ± 4.2), and milk yields (31.8 ± 1.73 kg; all mean ± standard deviation) were used in a replicated 3 × 3 Latin square design with 3 periods of 28 d. Cows were fed 1 of 3 dietary treatments in which FCWM replaced SBM as follows: basal diet with no replacement (0FCWM); 50% replacement of SBM with FCWM (50%FCWM); and 100% replacement of SBM with FCWM (100%FCWM). The diets were formulated to be isocaloric and isonitrogenous. The results showed that the total-tract digestibility of dry matter and crude protein increased linearly with increased dietary FCWM, and we found a trend for increased total-tract neutral detergent fiber and potentially digestible NDF digestibility. Milk yield tended to increase in a linear manner as more FCWM was consumed, and energycorrected milk production was significantly increased with FCWM supplementation as a result of increased milk protein and lactose yields. Plasma glucose and IgG concentrations increased linearly with increasing FCWM supplementation, but plasma malondialdehyde concentration decreased linearly. Concentrations of total volatile fatty acids and propionate showed a linear increase with increasing FCWM supplementation, leading to a linear decrease in pH. The relative abundance of ruminal Prevotellaceae, Veillonellaceae, and Prevotella 1 increased linearly with increasing FCWM supplementation, and the relative abundance of ruminal Succinivibrionaceae and Muribaculaceae decreased linearly.The relative abundance of fecal Ruminococcaceae, Prevotellaceae, and Ruminococcaceae UCG-005 increased linearly with increasing FCWM supplementation, but the relative abundance of fecal Peptostreptococcaceae decreased linearly. Overall, the replacement of SBM with FCWM altered the composition of the ruminal bacterial community and improved nutrient digestibility, lactation performance, and ruminal fermentation in cows, providing a data reference for the use of FCWM in dairy production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.