This paper describes a new method for fabricating a gas sensor composed of multi-wall carbon nanotubes (MWCNTs) using dielectrophoresis (DEP). MWCNTs dispersed in ethanol were trapped and enriched in an interdigitated microelectrode gap under the action of a positive DEP force that drove the MWCNTs to a higher electric field region. During the trapping of MWCNTs, the electrode impedance varied as the number of MWCNTs bridging the electrode gap increased. After the DEP process, the ethanol was evaporated and the microelectrode retaining the MWCNTs was exposed to ammonia (NH3) gas while the electrode impedance was monitored. It was found that the electrode impedance was altered by ppm-levels of ammonia at room temperature. The ammonia exposure decreased the sensor conductance, while the capacitance increased. The sensor showed a reversible response with a time constant of a few minutes. The conductance change was proportional to ammonia concentration below 10 ppm and then gradually saturated at higher concentrations. Effects of the number of trapped MWCNTs on sensor response were also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.