Neural disruptions during emotion regulation are common of generalized anxiety disorder (GAD). Identifying distinct functional and effective connectivity patterns in GAD may provide biomarkers for their diagnoses. This study aims to investigate the differences of features of brain network connectivity between GAD patients and healthy controls (HC), and to assess whether those differences can serve as biomarkers to distinguish GAD from controls. Independent component analysis (ICA) with hierarchical partner matching (HPM-ICA) was conducted on resting-state functional magnetic resonance imaging data collected from 20 GAD patients with medicine-free and 20 matched HC, identifying nine highly reproducible and significantly different functional brain connectivity patterns across diagnostic groups. We then utilized Granger causality (GC) to study the effective connectivity between the regions that identified by HPM-ICA. The linear discriminant analysis was finally used to distinguish GAD from controls with these measures of neural connectivity. The GAD patients showed stronger functional connectivity in amygdala, insula, putamen, thalamus, and posterior cingulate cortex, but weaker in frontal and temporal cortex compared with controls. Besides, the effective connectivity in GAD was decreased from the cortex to amygdala and basal ganglia. Applying the ICA and GC features to the classifier led to a classification accuracy of 87.5%, with a sensitivity of 90.0% and a specificity of 85.0%. These findings suggest that the presence of emotion dysregulation circuits may contribute to the pathophysiology of GAD, and these aberrant brain features may serve as robust brain biomarkers for GAD.
Approximately 20-30% of patients with epilepsy continue to have seizures despite carefully monitored treatment with antiepileptic drugs. The mechanisms that underlie why some patients are responsive and others prove resistant to antiepileptic drugs are poorly understood. Increasing evidence supports a role for altered mitochondrial function in the pathogenesis of epilepsy. To gain greater molecular insight in the pathogenesis of intractable epilepsy, we undertook a global analysis of protein expressions in a pharmacoresistant epileptic model selected by phenytoin in electrical amygdala-kindled rats by using two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption/ionization time of flight (MALDI-TOF-TOF). We identified five increased proteins and 14 decreased proteins including voltage-dependent anion channel 1 (VDAC1) with a 2.82-fold increased level (P < 0.05) and voltage-dependent anion channel 2 (VDAC2) with a 3.97-fold decreased level (P < 0.05) in hippocampus of pharmacoresistant rats. The increased VDAC1 and decreased VDAC2 were confirmed by Western blot analysis and immunohistochemistry. Vascular mitochondria and apoptosis neurons were observed through electron microscopy. Energy contents, the adenine nucleotides, were measured by high-performance liquid chromatography (HPLC). The correlation analyses were carried out between VDAC and the energy charge. These findings indicate that the increase of VDAC1 and the decrease of VDAC2 play an important role during the process and provide new molecular evidence in understanding mechanism of refractory epilepsy.
Spinocerebellar ataxias (SCAs) are a group of autosomal dominant, clinically heterogeneous neurodegenerative disorders. SCA18 is a rare autosomal dominant sensory/motor neuropathy with ataxia (OMIM#607458) associated with a single missense variant c.514 A>G in the interferon related developmental regulator 1 (IFRD1) gene previously reported in a five-generation American family of Irish origin. However, to date, there have been no other reports of the IFRD1 mutation to confirm its role in SCA. Here, we report a Han Chinese family with SCA18; the family members presented with a slowly progressing gait ataxia, pyramidal tract signs, and peripheral neuropathy. We identified a missense variant (c.514 A>G, p.I172V) in IFRD1 gene in the family using targeted next-generation sequencing and Sanger direct sequencing with specific primers. Our results suggest that the IFRD1 gene may be the causative allele for SCA18.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.