Cyclic guanosine monophosphate (cGMP) is a second messenger molecule that transduces nitric oxide (NO) and natriuretic peptide (NP) coupled signaling, stimulating phosphorylation changes by protein kinase G (PKG). Enhancing cGMP synthesis or blocking its degradation by phosphodiesterase type 5A (PDE5A) protects against cardiovascular disease1,2. However, cGMP stimulation alone is limited by counter-adaptions including PDE upregulation3. Furthermore, though PDE5A regulates NO-generated cGMP4,5, NO-signaling is often depressed by heart disease6. PDEs controlling NP-coupled cGMP remain uncertain. Here we show that cGMP-selective PDE9A7,8 is expressed in mammalian heart including humans, and is upregulated by hypertrophy and cardiac failure. PDE9A regulates NP rather than NO-stimulated cGMP in heart myocytes and muscle, and its genetic or selective pharmacological inhibition protects against pathological responses to neuro-hormones, and sustained pressure-overload stress. PDE9A inhibition reverses pre-established heart disease independent of NO-synthase (NOS) activity, whereas PDE5A inhibition requires active NOS. Transcription factor activation and phospho-proteome analyses of myocytes with each PDE selectively inhibited reveals substantial differential targeting, with phosphorylation changes from PDE5A inhibition being more sensitive to NOS activation. Thus, unlike PDE5A, PDE9A can regulate cGMP signaling independent of the NO-pathway, and its role in stress-induced heart disease suggests potential as a therapeutic target.
Abstract-AMP activated protein kinase (AMPK) plays an important role in regulating myocardial metabolism and protein synthesis. Activation of AMPK attenuates hypertrophy in cultured cardiac myocytes, but the role of AMPK in regulating the development of myocardial hypertrophy in response to chronic pressure overload is not known. To test the hypothesis that AMPK␣2 protects the heart against systolic overload-induced ventricular hypertrophy and dysfunction, we studied the response of AMPK␣2 gene deficient (knockout [KO]) mice and wild-type mice subjected to 3 weeks of transverse aortic constriction (TAC). Although AMPK␣2 KO had no effect on ventricular structure or function under control conditions, AMPK␣2 KO significantly increased TAC-induced ventricular hypertrophy (ventricular mass increased 46% in wild-type mice compared with 65% in KO mice) while decreased left ventricular ejection fraction (ejection fraction decreased 14% in wild-type mice compared with a 43% decrease in KO mice). AMPK␣2 KO also significantly exacerbated the TAC-induced increases of atrial natriuretic peptide, myocardial fibrosis, and cardiac myocyte size. AMPK␣2 KO had no effect on total S6 ribosomal protein (S6), p70 S6 kinase, eukaryotic initiation factor 4E, and 4E binding protein-1 or their phosphorylation under basal conditions but significantly augmented the TAC-induced increases of p-p70 S6 kinase Thr389 , p-S6 Ser235 , and p-eukaryotic initiation factor 4E Ser209 . AMPK␣2 KO also enhanced the TAC-induced increase of p-4E binding protein-1Thr46 to a small degree and augmented the TAC-induced increase of p-Akt Ser473 . These data indicate that AMPK␣2 exerts a cardiac protective effect against pressure-overloadinduced ventricular hypertrophy and dysfunction. Key Words: hypertrophy Ⅲ congestive heart failure Ⅲ mTOR I ncreases of cardiac work resulting from systolic overload necessitate an increase of ATP use in proportion to the increase in left ventricular (LV) systolic wall stress. 1,2 In response to chronic systolic overload, cardiac myocyte hypertrophy occurs, characterized by increased protein synthesis, whereas myocardial oxygen consumption and carbon substrate use are increased to accommodate the need for increased energy availability. This initially occurs with no change in high energy phosphate levels, but with the development of pathological hypertrophy and congestive heart failure, ATP levels fall and cytosolic free ADP levels increase (as indicated by a decrease of the myocardial phosphocreatine:ATP ratio). 2,3 In this situation, the adenylate kinase reaction can catalyze the reaction of 2 molecules of ADP to produce 1 molecule of ATP and 1 molecule of AMP. An increased AMP:ATP ratio results in activation of the energy stress sensor known as AMP activated protein kinase (AMPK).AMPK is composed of 1 catalytic ␣ subunit (either ␣1 or ␣2) and 2 regulatory subunits ( and ␥). AMPK␣2 is the dominant catalytic subunit in the heart, 3,4 where it is predominantly expressed in cardiac myocytes. AMPK is activated by metabolic stres...
Abstract-Inducible nitric oxide synthase (iNOS) protein is expressed in cardiac myocytes of patients and experimental animals with congestive heart failure (CHF). Here we show that iNOS expression plays a role in pressure overload-induced myocardial chamber dilation and hypertrophy. In wild-type mice, chronic transverse aortic constriction (TAC) resulted in myocardial iNOS expression, cardiac hypertrophy, ventricular dilation and dysfunction, and fibrosis, whereas iNOS-deficient mice displayed much less hypertrophy, dilation, fibrosis, and dysfunction. Consistent with these findings, TAC resulted in marked increases of myocardial atrial natriuretic peptide 4-hydroxy-2-nonenal (a marker of lipid peroxidation) and nitrotyrosine (a marker for peroxynitrite) in wild-type mice but not in iNOS-deficient mice. In response to TAC, myocardial endothelial NO synthase and iNOS was expressed as both monomer and dimer in wild-type mice, and this was associated with increased reactive oxygen species production, suggesting that iNOS monomer was a source for the increased oxidative stress. Moreover, systolic overload-induced Akt, mammalian target of rapamycin, and ribosomal protein S6 activation was significantly attenuated in iNOS-deficient mice. Furthermore, selective iNOS inhibition with 1400W (6 mg/kg per hour) significantly attenuated TAC induced myocardial hypertrophy and pulmonary congestion. These data implicate iNOS in the maladaptative response to systolic overload and suggest that selective iNOS inhibition or attenuation of iNOS monomer content might be effective for treatment of systolic overload-induced cardiac dysfunction. (Circ Res. 2007;100:1089-1098.)Key Words: superoxide anion Ⅲ peroxynitrite Ⅲ iNOS monomer Ⅲ mTOR S everal investigators have demonstrated that inducible nitric oxide synthase (iNOS) protein is expressed in cardiac myocytes and endocardial endothelium of patients and animals with ventricular hypertrophy or congestive heart failure (CHF) regardless of cause. 1-4 Thus, iNOS was coexpressed with tumor necrosis factor-␣ in cardiac myocytes from patients with dilated cardiomyopathy 2 and increased in several animal models of ventricular hypertrophy or CHF. 5 Although unregulated NO production by iNOS has been proposed to exert negative effects on cardiomyocyte function, the effect of iNOS expression on ventricular hypertrophy and CHF in the in vivo heart is controversial. Thus, Heger et al 6 reported that overexpression of iNOS in cardiac myocytes increased myocardial NOS activity and NO production but had no effect on cardiac morphology or function. In contrast, Mungrue et al 7 reported that cardiac-specific overexpression of iNOS resulted in inflammatory cell infiltrate, left ventricular (LV) hypertrophy, dilation, fibrosis, and contractile dysfunction. The level of iNOS expression in these transgenic mice would depend on the promoter activity, and the iNOSrelated phenotypes might vary depending on the level of myocardial iNOS expression. Furthermore, the effects of stress-induced iNOS expression in...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.