The water-energy-food nexus has gained increasing attention in the research communities as the security of water, energy and food becomes a very high concern due to future uncertainties. Studies pertaining to calculations of flows and dependencies between different resources, assessments of technology and policy applications, and quantifications of system performance have been conducted to understand their interlinkages and develop management options. This paper provides a state-of-the-art review on the concepts, research questions and methodologies in the field of waterenergy-food. First, two types of nexus definition are compared and discussed to understand the nature of nexus research issues. Then, nexus research questions are summarized into three themes: internal relationship analysis, external impact analysis, and nexus system evaluation. Eight nexus modelling approaches are discussed in terms of their advantages, disadvantages and applications, and guidance is provided on the selection of an appropriate modelling approach. Finally, future research challenges are identified, including system boundary, data uncertainty and modelling, underlying mechanism of nexus issues and system performance evaluation. This review helps bring research efforts together to address the challenging questions in the nexus research and develop sustainable and resilient water, energy and food systems. 2 Highlights: 1. Two definitions of nexus exist but they can be unified under integrated system assessment 2. Nexus research is classified into three questions: internal relationship, external analysis, system evaluation 3. Nexus modelling should consider research questions, system scales and data availability 4. Future research challenges are identified to develop sustainable and resilient nexus systems
Global threats such as climate change, population growth, and rapid urbanization pose a huge future challenge to water management, and, to ensure the ongoing reliability, resilience and sustainability of service provision, a paradigm shift is required. This paper presents an overarching framework that supports the development of strategies for reliable provision of services while explicitly addressing the need for greater resilience to emerging threats, leading to more sustainable solutions. The framework logically relates global threats, the water system (in its broadest sense), impacts on system performance, and social, economic, and environmental consequences. It identifies multiple opportunities for intervention, illustrating how mitigation, adaptation, coping, and learning each address different elements of the framework. This provides greater clarity to decision makers and will enable better informed choices to be made. The framework facilitates four types of analysis and evaluation to support the development of reliable, resilient, and sustainable solutions: “top‐down,” “bottom‐up,” “middle based,” and “circular” and provides a clear, visual representation of how/when each may be used. In particular, the potential benefits of a middle‐based analysis, which focuses on system failure modes and their impacts and enables the effects of unknown threats to be accounted for, are highlighted. The disparate themes of reliability, resilience and sustainability are also logically integrated and their relationships explored in terms of properties and performance. Although these latter two terms are often conflated in resilience and sustainability metrics, the argument is made in this work that the performance of a reliable, resilient, or sustainable system must be distinguished from the properties that enable this performance to be achieved.
Evaluating and enhancing resilience in water infrastructure is a crucial step towards more sustainable urban water management. As a prerequisite to enhancing resilience, a detailed understanding is required of the inherent resilience of the underlying system. Differing from traditional risk analysis, here we propose a global resilience analysis (GRA) approach that shifts the objective from analysing multiple and unknown threats to analysing the more identifiable and measurable system responses to extreme conditions, i.e. potential failure modes. GRA aims to evaluate a system's resilience to a possible failure mode regardless of the causal threat(s) (known or unknown, external or internal). The method is applied to test the resilience of four water distribution systems (WDSs) with various features to three typical failure modes (pipe failure, excess demand, and substance intrusion). The study reveals GRA provides an overview of a water system's resilience to various failure modes. For each failure mode, it identifies the range of corresponding failure impacts and reveals extreme scenarios (e.g. the complete loss of water supply with only 5% pipe failure, or still meeting 80% of demand despite over 70% of pipes failing). GRA also reveals that increased resilience to one failure mode may decrease resilience to another and increasing system capacity may delay the system's recovery in some situations. It is also shown that selecting an appropriate level of detail for hydraulic models is of great importance in resilience analysis. The method can be used as a comprehensive diagnostic framework to evaluate a range of interventions for improving system resilience in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.