Narrowly dispersed polyurethane (PU) nanocapsules containing lavender essential oil (LO) were fabricated by polyaddition of toluene diisocyanate (TDI) trimer with polyol using a phase inversion emulsification technique. The particle size distribution (PSD), surface morphology, structure, encapsulation parameters, release properties, and thermal stability of nanocapsules have been characterized using a laser particle size analyzer (LPSA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectrum (FTIR), and thermogravimetric analysis (TGA), respectively. Experimental results demonstrate that the nanocapsules have a smaller size (ca. 268 nm), regular sphericity, uniform particle size (polydispersity index, PDI = 0.078), clear core−shell structure, and smooth surface. When the ratio of LO to TDI trimer is 5:10, the yield, encapsulation efficiency, and loading capacity of the nanocapsules can reach a maximum of 70.7%, 98.6%, and 64.8%, respectively. Furthermore, the release experiments showed that the cumulative release of LO from nanocapsules was only about 17% at room temperature and about 32% at 50 °C even after 20 days.
Rational design of non-noble metal electrocatalysts is an urgent task to lower the cost of electrocatalysts for methanol oxidation reaction (MOR). Herein, mesoporous Cu-Co3O4 electrocatalysts have been prepared by using...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.