In plants, calcium acts as a universal second messenger in various signal transduction pathways. The plant-specific calcium-dependent protein kinases (CDPKs) play important roles regulating downstream components of calcium signaling. We conducted a genome-wide analysis of rice CDPKs and identified 29 CDPK genes and eight closely related kinase genes, including five CDPK-related kinases (CRKs), one calcium and calmodulin-dependent protein kinase (CCaMK) and two phosphoenolpyruvate (PEP) carboxylase kinase-related kinases (PEPRKs). The mRNA splicing sites of the rice CDPKs, CRKs and PEPRKs (but not OsCCaMK) are highly conserved, suggesting that these kinases are derived from a common ancestor. RNA gel blot analyses revealed that the majority of rice CDPK genes exhibited tissue-specific expression. Expression of OsCPK9 was elevated in seedlings infected by rice blast, indicating that this gene plays an important role in signaling in response to rice blast treatment. Our genomic and bioinformatic analyses will provide an important foundation for further functional dissection of the rice CDPK gene family.
MAPK cascades are universal signal transduction modules and play important roles in plant growth, development and in response to a variety of biotic and abiotic stresses. Although MAPKs and MAPKKs have been systematically investigated in several plant species including Arabidopsis, rice and poplar, no systematic analysis has been conducted in the emerging monocot model plant Brachypodium distachyon. In the present study, a total of 16 MAPK genes and 12 MAPKK genes were identified from B. distachyon. An analysis of the genomic evolution showed that both tandem and segment duplications contributed significantly to the expansion of MAPK and MAPKK families. Evolutionary relationships within subfamilies were supported by exon-intron organizations and the architectures of conserved protein motifs. Synteny analysis between B. distachyon and the other two plant species of rice and Arabidopsis showed that only one homolog of B. distachyon MAPKs was found in the corresponding syntenic blocks of Arabidopsis, while 13 homologs of B. distachyon MAPKs and MAPKKs were found in that of rice, which was consistent with the speciation process of the three species. In addition, several interactive protein pairs between the two families in B. distachyon were found through yeast two hybrid assay, whereas their orthologs of a pair in Arabidopsis and other plant species were not found to interact with each other. Finally, expression studies of closely related family members among B. distachyon, Arabidopsis and rice showed that even recently duplicated representatives may fulfill different functions and be involved in different signal pathways. Taken together, our data would provide a foundation for evolutionary and functional characterization of MAPK and MAPKK gene families in B. distachyon and other plant species to unravel their biological roles.
BACKGROUND: Current therapies for bone cancers-either primary or metastatic-are
Abscisic acid (ABA)-, stress-, and ripening-induced (ASR) proteins are reported to be involved in abiotic stresses. However, it is not known whether ASR genes confer drought stress tolerance by utilizing the antioxidant system. In this study, a wheat ASR gene, TaASR1, was cloned and characterized. TaASR1 transcripts increased after treatments with PEG6000, ABA and H2O2. Overexpression of TaASR1 in tobacco resulted in increased drought/osmotic tolerance, which was demonstrated that transgenic lines had lesser malondialdehyde (MDA), ion leakage (IL) and reactive oxygen species (ROS), but higher relative water content (RWC) and superoxide dismutase (SOD) and catalase (CAT) activities than wild type (WT) under drought stress. Overexpression of TaASR1 in tobacco also enhanced the expression of ROS-related and stress-responsive genes under osmotic stress. In addition, transgenic lines exhibited improved tolerance to oxidative stress by retaining more effective antioxidant system. Finally, TaASR1 was localized in the cell nucleus and functioned as a transcriptional activator. Taken together, our results showed that TaASR1 functions as a positive factor under drought/osmotic stress, involved in the regulation of ROS homeostasis by activating antioxidant system and transcription of stress-associated genes.
SummaryGibberellins (GA) promote while abscisic acid (ABA) inhibits seed germination and post-germination growth. To address the cross-talk of GA and ABA signaling, we studied two rice WRKY genes (OsWRKY51 and OsWRKY71) that are ABA-inducible and GA-repressible in embryos and aleurone cells. Over-expression of these two genes in aleurone cells specifically and synergistically represses induction of the ABA-repressible and GA-inducible Amy32b alpha-amylase promoter reporter construct (Amy32b-GUS) by GA or the GA-inducible transcriptional activator, GAMYB. The physical interactions of OsWRKY71 proteins themselves and that of OsWRKY71 and OsWRKY51 are revealed in the nuclei of aleurone cells using bimolecular fluorescence complementation (BiFC) assays. Although OsWRKY51 itself does not bind to the Amy32b promoter in vitro, it interacts with OsWRKY71 and enhances the binding affinity of OsWRKY71 to W boxes in the Amy32b promoter. The binding activity of OsWRKY71 is abolished by deleting the C-terminus containing the WRKY domain or substituting the key amino acids in the WRKY motif and the zinc finger region. However, two of these non-DNA-binding mutants are still able to repress GA induction by enhancing the binding affinity of the wild-type DNA-binding OsWRKY71 repressors. In contrast, the third non-DNA-binding mutant enhances GA induction of Amy32b-GUS, by interfering with the binding of the wild-type OsWRKY71 or the OsWRKY71/ OsWRKY51 repressing complex. These data demonstrate the synergistic interaction of ABA-inducible WRKY genes in regulating GAMYB-mediated GA signaling in aleurone cells, thereby establishing a novel mechanism for ABA and GA signaling cross-talk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.