We investigated the physiological function of three Arabidopsis thaliana homologs of the gibberellin (GA) receptor GIBBERELLIN-INSENSITIVE DWARF1 (GID1) by determining the developmental consequences of GID1 inactivation in insertion mutants. Although single mutants developed normally, gid1a gid1c and gid1a gid1b displayed reduced stem height and lower male fertility, respectively, indicating some functional specificity. The triple mutant displayed a dwarf phenotype more severe than that of the extreme GA-deficient mutant ga1-3. Flower formation occurred in long days but was delayed, with severe defects in floral organ development. The triple mutant did not respond to applied GA. All three GID1 homologs were expressed in most tissues throughout development but differed in expression level. GA treatment reduced transcript abundance for all three GID1 genes, suggesting feedback regulation. The DELLA protein REPRESSOR OF ga1-3 (RGA) accumulated in the triple mutant, whose phenotype could be partially rescued by loss of RGA function. Yeast two-hybrid and in vitro pull-down assays confirmed that GA enhances the interaction between GID1 and DELLA proteins. In addition, the N-terminal sequence containing the DELLA domain is necessary for GID1 binding. Furthermore, yeast three-hybrid assays showed that the GA-GID1 complex promotes the interaction between RGA and the F-box protein SLY1, a component of the SCF SLY1 E3 ubiquitin ligase that targets the DELLA protein for degradation.
Bioactive gibberellins (GAs) are phytohormones that regulate growth and development throughout the life cycle of plants. DELLA proteins are conserved growth repressors that modulate all aspects of GA responses. These GA-signaling repressors are nuclear localized and likely function as transcriptional regulators. Recent studies demonstrated that GA, upon binding to its receptor, derepresses its signaling pathway by binding directly to DELLA proteins and targeting them for rapid degradation via the ubiquitin-proteasome pathway. Therefore, elucidating the signaling events immediately downstream of DELLA is key to our understanding of how GA controls plant development. Two sets of microarray studies followed by quantitative RT-PCR analysis allowed us to identify 14 early GA-responsive genes that are also early DELLA-responsive in Arabidopsis thaliana seedlings. Chromatin immunoprecipitation provided evidence for in vivo association of DELLA with promoters of eight of these putative DELLA target genes. Expression of all 14 genes was downregulated by GA and upregulated by DELLA. Our study reveals that DELLA proteins play two important roles in GA signaling: (1) they help establish GA homeostasis by direct feedback regulation on the expression of GA biosynthetic and GA receptor genes, and (2) they promote the expression of downstream negative components that are putative transcription factors/regulators or ubiquitin E2/E3 enzymes. In addition, one of the putative DELLA targets, XERICO, promotes accumulation of abscisic acid (ABA) that antagonizes GA effects. Therefore, DELLA may restrict GA-promoted processes by modulating both GA and ABA pathways.
The WRKY proteins are a superfamily of regulators that control diverse developmental and physiological processes. This family was believed to be plant specific until the recent identification of WRKY genes in nonphotosynthetic eukaryotes. We have undertaken a comprehensive computational analysis of the rice (Oryza sativa) genomic sequences and predicted the structures of 81 OsWRKY genes, 48 of which are supported by full-length cDNA sequences. Eleven OsWRKY proteins contain two conserved WRKY domains, while the rest have only one. Phylogenetic analyses of the WRKY domain sequences provide support for the hypothesis that gene duplication of single-and two-domain WRKY genes, and loss of the WRKY domain, occurred in the evolutionary history of this gene family in rice. The phylogeny deduced from the WRKY domain peptide sequences is further supported by the position and phase of the intron in the regions encoding the WRKY domains. Analyses for chromosomal distributions reveal that 26% of the predicted OsWRKY genes are located on chromosome 1. Among the dozen genes tested, OsWRKY24, -51, -71, and -72 are induced by abscisic acid (ABA) in aleurone cells. Using a transient expression system, we have demonstrated that OsWRKY24 and -45 repress ABA induction of the HVA22 promoterb-glucuronidase construct, while OsWRKY72 and -77 synergistically interact with ABA to activate this reporter construct. This study provides a solid base for functional genomics studies of this important superfamily of regulatory genes in monocotyledonous plants and reveals a novel function for WRKY genes, i.e. mediating plant responses to ABA.
The molecular mechanism by which GA regulates plant growth and development has been a subject of active research. Analyses of the rice (Oryza sativa) genomic sequences identified 77 WRKY genes, among which OsWRKY71 is highly expressed in aleurone cells. Transient expression of OsWRKY71 by particle bombardment specifically represses GA-induced Amy32b α-amylase promoter but not abscisic acid-induced HVA22 or HVA1 promoter activity in aleurone cells. Moreover, OsWRKY71 blocks the activation of the Amy32b promoter by the GA-inducible transcriptional activator OsGAMYB. Consistent with its role as a transcriptional repressor, OsWRKY71 is localized to nuclei of aleurone cells and binds specifically to functionally defined TGAC-containing W boxes of the Amy32b promoter in vitro. Mutation of the two W boxes prevents the binding of OsWRKY71 to the mutated promoter, and releases the suppression of the OsGAMYB-activated Amy32b expression by OsWRKY71, suggesting that OsWRKY71 blocks GA signaling by functionally interfering with OsGAMYB. Exogenous GA treatment decreases the steady-state mRNA level of OsWRKY71 and destabilizes the GFP:OsWRKY71 fusion protein. These findings suggest that OsWRKY71 encodes a transcriptional repressor of GA signaling in aleurone cells.
Dental pulp/dentin regeneration using dental stem cells combined with odontogenic factors may offer great promise to treat and/or prevent premature tooth loss. Here, we investigate if BMP9 and Wnt/β-catenin act synergistically on odontogenic differentiation. Using the immortalized SCAPs (iSCAPs) isolated from mouse apical papilla tissue, we demonstrate that Wnt3A effectively induces early osteogenic marker alkaline phosphatase (ALP) in iSCAPs, which is reduced by β-catenin knockdown. While Wnt3A and BMP9 enhance each other’s ability to induce ALP activity in iSCAPs, silencing β- catenin significantly diminishes BMP9-induced osteo/odontogenic differentiation. Furthermore, silencing β-catenin reduces BMP9-induced expression of osteocalcin and osteopontin and in vitro matrix mineralization of iSCAPs. In vivo stem cell implantation assay reveals that while BMP9-transduced iSCAPs induce robust ectopic bone formation, iSCAPs stimulated with both BMP9 and Wnt3A exhibit more mature and highly mineralized trabecular bone formation. However, knockdown of β-catenin in iSCAPs significantly diminishes BMP9 or BMP9/Wnt3A-induced ectopic bone formation in vivo. Thus, our results strongly suggest that β-catenin may play an important role in BMP9-induced osteo/ondontogenic signaling and that BMP9 and Wnt3A may act synergistically to induce osteo/odontoblastic differentiation of iSCAPs. It’s conceivable that BMP9 and/or Wnt3A may be explored as efficacious biofactors for odontogenic regeneration and tooth engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.