Bioactive gibberellins (GAs) are phytohormones that regulate growth and development throughout the life cycle of plants. DELLA proteins are conserved growth repressors that modulate all aspects of GA responses. These GA-signaling repressors are nuclear localized and likely function as transcriptional regulators. Recent studies demonstrated that GA, upon binding to its receptor, derepresses its signaling pathway by binding directly to DELLA proteins and targeting them for rapid degradation via the ubiquitin-proteasome pathway. Therefore, elucidating the signaling events immediately downstream of DELLA is key to our understanding of how GA controls plant development. Two sets of microarray studies followed by quantitative RT-PCR analysis allowed us to identify 14 early GA-responsive genes that are also early DELLA-responsive in Arabidopsis thaliana seedlings. Chromatin immunoprecipitation provided evidence for in vivo association of DELLA with promoters of eight of these putative DELLA target genes. Expression of all 14 genes was downregulated by GA and upregulated by DELLA. Our study reveals that DELLA proteins play two important roles in GA signaling: (1) they help establish GA homeostasis by direct feedback regulation on the expression of GA biosynthetic and GA receptor genes, and (2) they promote the expression of downstream negative components that are putative transcription factors/regulators or ubiquitin E2/E3 enzymes. In addition, one of the putative DELLA targets, XERICO, promotes accumulation of abscisic acid (ABA) that antagonizes GA effects. Therefore, DELLA may restrict GA-promoted processes by modulating both GA and ABA pathways.
SummaryFalcilysin (FLN) is a zinc metalloprotease thought to degrade globin peptides in the acidic vacuole of the human malaria parasite Plasmodium falciparum. The enzyme has been found to have acidic or neutral pH optima on different peptides and to have additional distribution outside the food vacuole. These data suggested that FLN has an additional function in the parasite. To further probe the functions of FLN, we created a transgenic parasite clone expressing a chromosomally encoded FLN-GFP fusion. Unexpectedly, FLN was found in the apicoplast, an essential chloroplast-like organelle. Nuclear encoded apicoplast proteins are targeted to the organelle by a bipartite N-terminal sequence comprised of a signal sequence followed by a positively charged transit peptide domain. Free transit peptides are thought to be toxic to the plastid and need to be rapidly degraded after proteolytic release from proproteins. We hypothesized that FLN may participate in transit peptide degradation in the apicoplast based on its preference for basic residues at neutral pH and on phylogenetic comparison with other M16 family metalloproteases. In vitro cleavage by FLN of the transit peptide from the apicoplast-resident acyl carrier protein supports this idea. The importance of FLN for parasite development is suggested by our inability to truncate the chromosomal FLN open reading frame. Our work indicates that FLN is an attractive target for antimalarial development.
Fluorescence differential display was used to isolate the gibberellin (GA)-responsive gene, CsAGP1, from cucumber (Cucumis sativus) hypocotyls. A sequence analysis of CsAGP1 indicated that the gene putatively encodes a "classical" arabinogalactan protein (AGP) in cucumber. Transgenic tobacco (Nicotiana tabacum) plants overexpressing CsAGP1 under the control of the cauliflower mosaic virus 35S promoter produced a Y(Glc) 3 -reactive proteoglycan in addition to AGPs present in wild-type tobacco plants. Immuno-dot blotting of the product, using anti-AGP antibodies, showed that the CsAGP1 protein had the AGP epitopes common to AGP families. The transcription level of CsAGP1 in cucumber hypocotyls increased in response not only to GA but also to indole-3-acetic acid. Although CsAGP1 is expressed in most vegetative tissues of cucumber, including the shoot apices and roots, the GA treatment resulted in an increase in the mRNA level of CsAGP1 only in the upper part of the hypocotyls. Y(Glc) 3 , which selectively binds AGPs, inhibited the hormone-promoted elongation of cucumber seedling hypocotyls. Transgenic plants ectopically expressing CsAGP1 showed a taller stature and earlier flowering than the wild-type plants. These observations suggest that CsAGP1 is involved in stem elongation.
Black tomatoes have a unique color and higher lycopene content than typical red tomatoes. Here, black tomatoes were investigated how maturation stage and storage temperature affected carotenoid and chlorophyll accumulation. Immature fruits were firmer than mature fruits, but failed to develop their distinctive color and contained less lycopene when stored at 8 °C. Hunter a values of black tomatoes increased with storage temperature and duration; storage of immature fruits at high temperature favored lycopene accumulation. Chlorophyll levels of black tomatoes declined during storage, but differences between mature and immature tomatoes stored at 12 °C were minimal. β-Carotene levels of black tomatoes increased during early storage, but rapidly declined beginning 13 d post-harvest. The highest lycopene and chlorophyll levels were observed in mature black tomatoes stored at 12 °C for 13 d; these conditions also yielded the best quality fruit. Thus, the unique pigmentation properties of black tomatoes can be precisely controlled by standardizing storage conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.