Superhydrophobic carbon nanotube (CNT) films have demonstrated many fascinating performances in versatile applications, especially for those involving solid/liquid interfacial processes, because of their ability to affect the material/energy transfer at interfaces. Thus, developing superhydrophobic CNTs has attracted extensive research interests in the past decades, and it could be achieved either by surface coating of low-free energy materials or by constructing micro/nanohierarchical structures via various complicated processes. So far, developing a simple approach to fabricate stable superhydrophobic CNTs remains a challenge because the capillary force induced coalescence frequently happens when interacting with liquid. Herein, drawing inspirations from the lotus leaf, we proposed a simple one-step chemical vapor deposition approach with programmable controlled gas flow to directly fabricate a CNT film with rather stable superhydrophobicity, which can effectively prevent even small water droplets from permeating into the film. The robust superhydrophobicity was attributable to typical lotus-leaf-like micro/nanoscale hierarchical surface structures of the CNT film, where many microscale clusters composed of entangled nanotubes randomly protrude out of the under-layer aligned nanotubes. Consequently, dual-scale air pockets were trapped within each microscale CNT cluster and between, which could largely reduce the liquid/solid interface, leading to a Cassie state. Moreover, the superhydrophobicity of the CNT film showed excellent durability after long time exposure to air and even to corrosive liquids with a wide range of pH values. We envision that the approach developed is advantageous for versatile physicochemical interfacial processes, such as drag reduction, electrochemical catalysis, anti-icing, and biosensors.
BackgroundMajor depression, persistent low mood, is one of common psychiatric diseases. Chronic stressful life is believed to be a major risk factor that leads to dysfunctions of the limbic system. However, a large number of the individuals with experiencing chronic stress do not suffer from major depression, called as resilience. Endogenous mechanisms underlying neuronal invulnerability to chronic stress versus major depression are largely unknown. As GABAergic neurons are vulnerable to chronic stress and their impairments is associated with major depression, we have examined whether the invulnerability of GABAergic neurons in the limbic system is involved in resilience.ResultsGABAergic neurons in the nucleus accumbens from depression-like mice induced by chronic unpredictable mild stress appear the decreases in their GABA release, spiking capability and excitatory input reception, compared with those in resilience mice. The levels of decarboxylase and vesicular GABA transporters decrease in depression-like mice, but not resilience.Materials and MethodsMice were treated by chronic unpredictable mild stress for three weeks. Depression-like behaviors or resilience was confirmed by seeing whether their behaviors change significantly in sucrose preference, Y-maze and forced swimming tests. Mice from controls as well as depression and resilience in response to chronic unpredictable mild stress were studied in terms of GABAergic neuron activity in the nucleus accumbens by cell electrophysiology and protein chemistry.ConclusionsThe impairment of GABAergic neurons in the nucleus accumbens is associated with major depression. The invulnerability of GABAergic neurons to chronic stress may be one of cellular mechanisms for the resilience to chronic stress.
Soft gels that integrate the water retention of hydrogels and the water swelling resistance of organogels are sought by researchers. Such materials have useful properties and potential applications in stretchable and biointegrated fields, such as tissue engineering, microfluidics, and biomedical devices. This study reports a simple yet versatile method for assembling hydrogels and organogels into covalently tethered hybrids to provide robust properties, such as excellent stretchability, tough interfacial bonds, enduring antiswelling, and low dehydration. The proposed method is simple and can generally be applied to hydrogels that contain hydroxyl terminal groups and commonly used organogels that can copolymerize with double‐bond groups. The unique property of being externally hydrophobic and internally hydrophilic enables the organogel–hydrogel hybrids to be applied to many fields, such as mobility control of water droplets, printing, and 3D structure development. The organogel hydrogel hybrids not only present superior wettability performances, such as water retention and swelling resistance, but also present applicable functions that make them useful in tissue engineering and biomedical devices in vivo.
AIM: To compare the differences and consistency of IOL-Master 700 biometers applying swept optical coherence tomography with the conventional IOL-Master 500 applying partial coherence interference in terms of the ocular biological parameters in adolescents with ametropia. METHODS: A total of 110 adolescents (110 eyes) with ametropia were collected, including 55 males and 55 females; age 10.69±2.81y. Ocular biological measurements were taken by IOL-Master 700 and IOL-Master 500 respectively to obtain biological parameters including axial length (AL), mean corneal anterior surface keratometry (Km), anterior chamber depth (ACD), and horizontal corneal diameter (WTW). Paired t-test was used to compare the differences between the two instruments. The intra-group correlation coefficient (ICC) and the Bland-Altman analysis were used to evaluate the consistency of parameter measurements between the two instruments for the four biological parameters. RESULTS: Statistical analysis showed that there was no significant difference in the Km value measured by IOL-Master 700 and IOL-Master 500 (t=-1.644, P=0.116). The average differences of the AL, ACD, and WTW distances between the two instruments are 0.028, 0.101 and 0.064 mm respectively, and the differences are statistically significant (t=2.644, 12.505, 3.911, P<0.001). The consistency study results indicated high correlation in the measurement of AL, Km, ACD and WTW between the two instruments (ICC=0.994, 0.873, 0.927, 0.912). CONCLUSION: The novel biometric instrument IOL-Master 700 makes no difference with IOL-Master 500 in the measurement of Km. There are some differences in the values of AL, ACD, and WTW. However, the two instruments show good consistency in these four biological measurements. The measured values of Km are interchangeable between the instruments. These two types of biometrics can be used as mutual reference in consideration of that the differences in AL, ACD, and WTW measurements are not sufficient to produce clinically meaningful differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.