A new reductive co-precipitation route to synthesize a pure phase nanosized b-SnSb alloy in alcohol solution at low temperature is reported. The morphology and particle size of the b-SnSb alloy are in¯uenced by temperature, stirring and the solvent. The nanosized b-SnSb alloy prepared by this method shows good electrochemical performance as an anode material for lithium ion batteries. The b-SnSb alloy transforms gradually into multiphase Li 3 Sb and Li x Sn with increased insertion of lithium ions. After extraction of the lithium ions, the original crystal structure of b-SnSb is restored, even after many cycles.
A high capacity of laccase from Trametes versicolor capable of degrading pesticides has been revealed. The conditions for degrading of five selected pesticides including chlorpyrifos, chlorothalonil, pyrimethanil, atrazine and isoproturon with the purified laccases from Trametes versicolor were optimized. The results showed that the optimum conditions for the highest activity were pH at 5.0 and temperature at 25 °C. The best mediators were violuric acid for pyrimethanil and isoproturon, vanillin for chlorpyrifos, and acetosyringone and HBT for chlorothalonil and atrazine, respectively. The laccase was found to be stable at a pH range from 5.0 to 7.0 and temperature from 25 to 30 °C. It was observed that each pesticide required a different laccase mediator concentration typically between 4.0–6.0 mmol/L. In the experiment, the degradation rates of pyrimethanil and isoproturon were significantly faster than those of chlorpyrifos, chlorothalonil and atrazine. For example, it was observed that pyrimethanil and isoproturon degraded up to nearly 100% after 24 hours while the other three pesticides just reached up 90% of degradation after 8 days of incubation.
Thermostability can be increased by introducing prolines at suitable sites in target proteins. Two single (G138P, G247D) mutants and one double (G138P/G247D) mutant of xylose isomerase from Streptomyces diastaticus No.7, strain M1033 have been constructed by site-directed mutagenesis. With respect to the wild-type enzyme, G138P showed about a 100% increase in thermostability, and G247D showed an increased catalytic activity. Significantly, the double mutant, G138P/G247D displayed even higher activity than G247D and better heat stability than G138P. Its half life was about 2.5-fold greater than the wild-type enzyme, using xylose as a substrate. Molecular modelling suggested that the introduction of a proline residue in the turn of a random coil may cause the surrounding conformation to be tightened by reducing the backbone flexibility. The change in thermostability can, therefore, be explained based on changes in the molecular rigidity. Furthermore, the improvements in the properties of the double mutant indicated that the advantages of two single mutants can be combined effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.