These authors have contributed equally to this work. SUMMARYThe identification of genes that improve the salt tolerance of crops is essential for the effective utilization of saline soils for agriculture. Here, we use fine mapping in a soybean (Glycine max (L.) Merr.) population derived from the commercial cultivars Tiefeng 8 and 85-140 to identify GmSALT3 (salt tolerance-associated gene on chromosome 3), a dominant gene associated with limiting the accumulation of sodium ions (Na + )in shoots and a substantial enhancement in salt tolerance in soybean. GmSALT3 encodes a protein from the cation/H + exchanger family that we localized to the endoplasmic reticulum and which is preferentially expressed in the salt-tolerant parent Tiefeng 8 within root cells associated with phloem and xylem. We identified in the salt-sensitive parent, 85-140, a 3.78-kb copia retrotransposon insertion in exon 3 of Gmsalt3 that truncates the transcript. By sequencing 31 soybean landraces and 22 wild soybean (Glycine soja) a total of nine haplotypes including two salt-tolerant haplotypes and seven salt-sensitive haplotypes were identified. By analysing the distribution of haplotypes among 172 Chinese soybean landraces and 57 wild soybean we found that haplotype 1 (H1, found in Tiefeng 8) was strongly associated with salt tolerance and is likely to be the ancestral allele. Alleles H2-H6, H8 and H9, which do not confer salinity tolerance, were acquired more recently. H1, unlike other alleles, has a wide geographical range including saline areas, which indicates it is maintained when required but its potent stress tolerance can be lost during natural selection and domestication. GmSALT3 is a gene associated with salt tolerance with great potential for soybean improvement.
Shellfish allergy is a prevalent, long-lasting disorder usually persisting throughout life. However, the allergen information is incomprehensive in crab. This study aimed to identify a novel allergen in crab, show its potential in diagnosis and reduce the allergenicity by food processing. A 21-kDa protein was purified from Scylla paramamosain and confirmed as sarcoplasmic calcium binding protein (SCP) by matrix-assisted laser desorption ionization-time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). Total RNA was isolated from crab muscle, and a rapid amplification of cDNA was performed to obtain an ORF of 579 bp that coded for 193 amino acid residues. According to the results of circular dichroism analysis and ELISA assay, the recombinant SCP (rSCP) expressed in Escherichia coli showed similar physicochemical and immunoreactive properties to native SCP (nSCP). Additionally, the extensive cross reactivity of SCP among different species and the bidirectional IgE cross-reactivity between nSCP and rSCP were detected by iELISA. The allergenicity of rSCP was reduced via Maillard reaction or enzymatic cross-linking reaction, which was confirmed by the results of scanning electron microscopy, dot blot, and digestion assay. A straightforward and reproducible way was developed to obtain high yields of rSCP that maintains structural integrity and full IgE reactivity, which could compensate the low specific IgE-titers of most patient sera for future diagnosis. Furthermore, the Maillard reaction and enzymatic cross-linking reaction were effective approaches for the production of hypoallergenic seafood.
The enzymatic cross-linking of proteins to form high-molecular-weight compounds may alter their sensitization potential. The IgG-/IgE-binding activity, digestibility, allergenicity, and oral tolerance of cross-linked tropomyosin with tyrosinase (CTC) or horseradish peroxidase (CHP) were investigated. ELISA results demonstrated CTC or CHP reduced its IgE-binding activity by 34.5 ± 1.8 and 63.5 ± 0.6%, respectively. Compared with native tropomyosin or CTC, CHP was more easily digested into small fragments; CHP decreased the degranulation of RBL-2H3 cells and increased endocytosis by dendritic cells. CHP can induce oral tolerance and reduce allergenicity in mice by decreasing IgE and IgG1 levels in serum, the production of T-cell cytokines, and the percentage composition of dendritic cells. These findings demonstrate CHP has more potential of reducing the allergenicity than CTC via influencing the morphology of protein, changing the original method of antigen presentation, modulating the Th1/Th2 immunobalance, and inducing the oral tolerance of the allergen tropomyosin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.