Organic solar cells are currently experiencing a second golden age thanks to the development of novel non‐fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high‐performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near‐unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier.
Severe acute respiratory syndrome coronavirus (SARS-CoV) is the pathogen of SARS, which caused a global panic in 2003. We describe here the screening of Chinese herbal medicine-based, novel small molecules that bind avidly with the surface spike protein of SARS-CoV and thus can interfere with the entry of the virus to its host cells. We achieved this by using a two-step screening method consisting of frontal affinity chromatography-mass spectrometry coupled with a viral infection assay based on a human immunodeficiency virus (HIV)-luc/SARS pseudotyped virus. Two small molecules, tetra-O-galloyl--D-glucose (TGG) and luteolin, were identified, whose anti-SARS-CoV activities were confirmed by using a wild-type SARS-CoV infection system. TGG exhibits prominent anti-SARS-CoV activity with a 50% effective concentration of 4.5 M and a selective index of 240.0. The two-step screening method described here yielded several small molecules that can be used for developing new classes of anti-SARS-CoV drugs and is potentially useful for the high-throughput screening of drugs inhibiting the entry of HIV, hepatitis C virus, and other insidious viruses into their host cells.
Charge carrier traps are generally highly detrimental for the performance of semiconductor devices. Unlike the situation for inorganic semiconductors, detailed knowledge about the characteristics and causes of traps in organic semiconductors is still very limited. Here, we accurately determine hole and electron trap energies for a wide range of organic semiconductors in thin-film form. We find that electron and hole trap energies follow a similar empirical rule and lie ~0.3 -0.4 eV above (below) the highest occupied and lowest unoccupied molecular orbitals, respectively. Combining experimental and theoretical methods, the origin of the traps is shown to be a dielectric effect of water penetrating nano-voids in the organic semiconductor thin film. We also propose a solvent-annealing method to remove water-related traps from the materials investigated, irrespective of their energy levels. These findings represent a step towards the realization of trap-free organic semiconductor thin films.
A universal method to obtain record-high electronic Seebeck coefficients is demonstrated while preserving reasonable conductivities in doped blends of organic semiconductors through rational design of the density of states (DOSs). A polymer semiconductor with a shallow highest occupied molecular orbital (HOMO) level-poly(3-hexylthiophene) (P3HT) is mixed with materials with a deeper HOMO (PTB7, TQ1) to form binary blends of the type P3HT x :by F 4 TCNQ. For B = PTB7, a Seebeck coefficient S = 1100 µV K −1 with conductivity σ = 0.3 S m −1 at x = 0.10 is achieved, while for B = TQ1, S = 2000 µV K −1 and σ = 0.03 S m −1 at x = 0.05 is found. Kinetic Monte Carlo simulations with parameters based on experiments show good agreement with the experimental results, confirming the intended mechanism. The simulations are used to derive a design rule for parameter tuning. These results can become relevant for low-power, low-cost applications like (providing power to) autonomous sensors, in which a high Seebeck coefficient translates directly to a proportionally reduced number of legs in the thermogenerator, and hence in reduced fabrication cost and complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.