While enzymatic hydrolysis is an effective method for lowering the antigenicity of cow milk (CM), research regarding the antigenicity and nutritional traits of CM hydrolysate is limited. Here, we evaluated the protein content, amino acid composition, sensory traits, color, flow behavior, and antigenicity of CM following enzymatic hydrolysis. The results showed that enzymatic hydrolysis increased the degree of hydrolysis, destroyed allergenic proteins, including casein, β-lactoglobulin, and ɑ-lactalbumin, and significantly increased the content of free amino acids and nutritional quality. In particular, the antigenicity of CM was significantly reduced from 44.05 to 86.55% (P < 0.5). Simultaneously, the taste, color, and flow behavior of CM were altered, the sweetness and richness intensity decreased significantly (P < 0.5), and astringency and bitterness were produced. A slightly darker and more yellow color was observed in CM hydrolysate. In addition, apparent viscosity decreased and shear stress significantly increased with increasing shear rate intensity. The results will provide a solid theoretical foundation for the development of high-quality hypoallergenic dairy products.
Cow's milk (CM) allergy is a common food allergy that seriously impacts the growth and development of infants and children. However, CM is an important source of nutrients, and few studies focus on the effects of enzymatic hydrolysis treatment on the whole skimmed CM system. In this study, the IgG/IgE-binding and functional properties of Alcalase-, Protamex-, and Flavourzyme-treated skimmed CM (AT, PT, and FT, respectively) were systematically evaluated. The results showed that the treatment groups were mainly composed of low molecular weight (MW) peptides (<3 kDa), accounting for 94.85%-97.90%. Additionally, the IgG reactivity of these peptides was significantly lower (p < 0.05) than those of higher MW peptides (10-30 kDa and >30 kDa). The IgE reactivity of FT with higher MW peptides was the lowest among these groups, with the OD value reaching 0.089. Moreover, the total amino acid content of hydrolysates of skimmed CM (HM) increased significantly (skimmed CM, 5.94 µg/mL; AT, 123.70 µg/mL; PT: 136.20 µg/mL; FT, 988.72 µg/mL) compared to that in skimmed CM. A total of 10, 10, and 7 flavor compounds were increased in AT, PT, and FT, respectively. Furthermore, the solubility, foamability, and emulsifying ability of HM were significantly improved, being 2.17-fold, 1.52-fold, and 1.96-fold higher in PT than in skimmed CM. These results lay a theoretical foundation for the development of hypoallergenic dairy products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.