Genotype dependency is the most important factor in wheat genetic transformation, which further limits wheat improvement by transgenic integration and genome editing approaches. The application of regeneration related genes during in vitro culture could potentially contribute to enhancement of plant transformation e ciency. In the present study, a wheat gene TaCB1 in the WUSCHEL family was identi ed to dramatically increase the transformation e ciencies of many wheat varieties without genotype dependency after its over-expression. The expression of TaCB1 in wheat calli did not prohibit shoot differentiation and root development. The application of TaCB1 can lighten the requirement to wheat immature embryo for plant regeneration. Transgenic wheat plants can be clearly recognized by the visible phenotype of wide ag leaves. The promise function of TaCB1 on improving transformation e ciency was also tested in T. monococcum, triticale, rye, barley, and maize.
A comparative proteomic analysis of drought-responsive proteins during grain development of two wheat varieties Kauz (strong resistance to drought stress) and Janz (sensitive to drought stress) was performed by using linear and nonlinear 2-DE and MALDI-TOF mass spectrometry technologies. Results revealed that the nonlinear 2-DE had much higher resolution than the linear 2-DE. A total of 153 differentially expressed protein spots were detected by both 2-DE maps, of which 122 protein spots were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry. The identified differential proteins were mainly involved in carbohydrate metabolism (26%), detoxification and defense (23%), and storage proteins (17%). Some key proteins demonstrated significantly different expression patterns between the two varieties. In particular, catalase isozyme 1, WD40 repeat protein, LEA and alpha-amylase inhibitors displayed an upregulated expression pattern in Kauz, whereas they were downregulated or unchanged in Janz. Small and large subunit ADP glucose pyrophosphorylase, ascorbate peroxidase and G beta-like protein were all downregulated under drought stress in Janz, but had no expression changes in Kauz. Sucrose synthase and triticin precursor showed an upregulated expression pattern under water deficits in both varieties, but their upregulation levels were much higher in Kauz than in Janz. These differentially expressed proteins could be related to the biochemical pathways for stronger drought resistance of Kauz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.