We investigate the linear-response conductance through a pair of coupled quantum dots. The conductance spectrum under ideal conditions is shown to consist of two sets of twin peaks whose locations and amplitudes are determined by the interdot coupling and the intradot charging. We will show that the qualitative features of the spectrum survive against experimental nonidealities such as (1) detuning of the individual dots, (2) interdot charging, (3) inelastic scattering, and (4) multiple lateral states. The effect of higher lateral states depends strongly on the nature of the interaction potential, screening lengths, and exchange terms, but the lowest set of twin peaks is largely unaffected by these details.
We apply the Hubbard Hamiltonian to describe quantum-dot arrays weakly coupled to two contacts. Exact diagonalization is used to calculate the eigenstates of the arrays containing up to six dots and the linear-response conductance is then calculated as a function of the Fermi energy. In the atomic limit the conductance peaks form two distinct groups separated by the intradot Coulomb repulsion, while in the band limit the peaks occur in pairs. The crossover is studied. A finite interdot repulsion is found to cause interesting rearrangements in the conductance spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.